Abstract

In this research, the effects of water contamination in oil were investigated on two kinds of failures that occur in bearing steel: micropitting and rolling contact fatigue. Whereas the presence of water in the oil had little effect on the generation of surface wear in these experiments, increases in the occurrences of micropitting and rolling contact fatigue were observed due to the presence of either dissolved or free water in lubricants. Additionally, the presence of white etching matter at crack interfaces was observed and evaluated. The experimental results showed that water content can be considered as a significant factor that accelerates the formation of micropitting and fatigue cracks in rolling bearings.

References

1.
Schatzbe
,
P.
, and
Felsen
,
I. M.
,
1968
, “
Effects of Water and Oxygen During Rolling Contact Lubrication
,”
Wear
,
12
(
5
), pp.
331
342
.
2.
Schatzbe
,
P.
,
1971
, “
Inhibition of Water-Accelerated Rolling-Contact Fatigue
,”
ASME J. Lubr. Technol.
,
93
(
2
), pp.
231
233
.
3.
Cantley
,
R. E.
,
1977
, “
The Effect of Water in Lubricating Oil on Bearing Fatigue Life
,”
ASLE Trans.
,
20
(
3
), pp.
244
248
.
4.
Soltanahmadi
,
S.
,
Morina
,
A.
,
van Eijk
,
M. C.
,
Nedelcu
,
I.
, and
Neville
,
A.
,
2017
, “
Tribochemical Study of Micropitting in Tribocorrosive Lubricated Contacts: The Influence of Water and Relative Humidity
,”
Tribol. Int.
,
107
, pp.
184
198
.
5.
Echin
,
A. I.
,
Novosartov
,
G. T.
, and
Popova
,
E. A.
,
1981
, “
Hygroscopicity of Synthetic Oils
,”
Chem. Technol. Fuels Oils
,
17
(
3–4
), pp.
198
200
.
6.
Lancaster
,
J. K.
,
1990
, “
A Review of the Influence of Environmental Humidity and Water on Friction, Lubrication and Wear
,”
Tribol. Int.
,
23
(
6
), pp.
371
389
.
7.
Fitch
,
J. C.
, and
Jaggernauth
,
S.
,
1994
, “
Moisture—The Second Most Destructive Lubricant Contaminate, and Its Effects on Bearing Life
,”
P/PM Technol.
,
12
, pp.
1
4
.
8.
Grunberg
,
L.
, and
Scott
,
D.
,
1958
, “
The Acceleration of Pitting Failure by Water in the Lubricant
,”
J. Inst. Pet.
,
44
(
419
), p.
406
.
9.
Kotzalas
,
M. N.
, and
Doll
,
G. L.
,
2010
, “
Tribological Advancements for Reliable Wind Turbine Performance
,”
Philos. Trans. Roy. Soc. A
,
368
(
1929
), pp.
4829
4850
.
10.
Errichello
,
R. L.
,
2012
, “
Morphology of Micropitting
,”
Gear Technol.
,
4
, pp.
74
81
.
11.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Assessment of the Factors Influencing Micropitting in Rolling/Sliding Contacts
,”
Wear
,
258
(
10
), pp.
1510
1524
.
12.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
13.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Philos. Trans. Roy. Soc. A
,
295
(
1442
), pp.
300
319
.
14.
Ai
,
X. L.
, and
Sawamiphakdi
,
K.
,
1999
, “
Solving Elastic Contact Between Rough Surfaces As an Unconstrained Strain Energy Minimization by Using CGM and FFT Techniques
,”
ASME J. Tribol.
,
121
(
4
), pp.
639
647
.
15.
Morales-Espejel
,
G. E.
, and
Brizmer
,
V.
,
2011
, “
Micropitting Modelling in Rolling–Sliding Contacts: Application to Rolling Bearings
,”
Tribol. Trans.
,
54
(
4
), pp.
625
643
.
16.
Brandão
,
J. A.
,
Martins
,
R.
,
Seabra
,
J. H.
, and
Castro
,
M. J.
,
2015
, “
An Approach to the Simulation of Concurrent Gear Micropitting and Mild Wear
,”
Wear
,
324
, pp.
64
73
.
17.
Martins
,
R. C.
,
Seabra
,
J. H. O.
, and
Moron
,
L. F.
,
2011
, “
Influence of PAO Plus Ester Oil Formulations on Gear Micropitting and Efficiency
,”
Int. J. Surf. Sci. Eng.
,
5
(
4
), pp.
312
329
.
18.
Martins
,
R. C.
,
Seabra
,
J. H. O.
, and
Ruis-Moron
,
L. F.
,
2011
, “
Influence of Oil Formulation on Gear Micropitting and Power Loss Performance
,”
Proc. Inst. Mech. Eng. J.: J. Eng. Tribol.
,
225
(
J6
), pp.
429
439
.
19.
Soltanahmadi
,
S.
,
Morina
,
A.
,
van Eijk
,
M. C.
,
Nedelcu
,
I.
, and
Neville
,
A.
,
2016
, “
Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling–Sliding Contacts
,”
J. Phys. D: Appl. Phys.
,
49
(
50
), p.
505302
.
20.
Eckels
,
M.
,
Kotzalas
,
M. N.
, and
Doll
,
G. L.
,
2013
, “
Attaining High Levels of Bearing Performance With a Nanocomposite Diamond-Like Carbon Coating
,”
Tribol. Trans.
,
56
(
3
), pp.
410
416
.
21.
Šmeļova
,
V.
,
Schwedt
,
A.
,
Wang
,
L.
,
Holweger
,
W.
, and
Mayer
,
J.
,
2017
, “
Electron Microscopy Investigations of Microstructural Alterations Due to Classical Rolling Contact Fatigue (RCF) in Martensitic AISI 52100 Bearing Steel
,”
Int. J. Fatigue
,
98
, pp.
142
154
.
22.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.
23.
Bower
,
A. F.
,
1988
, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
,
110
(4), pp.
704
711
.
24.
Evans
,
M. H.
,
2016
, “
An Updated Review: White Etching Cracks (WECs) and Axial Cracks in Wind Turbine Gearbox Bearings
,”
Mater. Sci. Technol.
,
32
(
11
), pp.
1133
1169
.
25.
Evans
,
M. H.
,
2012
, “
White Structure Flaking (WSF) in Wind Turbine Gearbox Bearings: Effects of ‘Butterflies’ and White Etching Cracks (WECs)
,”
Mater. Sci. Technol.
,
28
(
1
), pp.
3
22
.
26.
Bhadeshia
,
H. K. D. H.
, and
Solano-Alvarez
,
W.
,
2015
, “
Critical Assessment 13: Elimination of White Etching Matter in Bearing Steels
,”
Mater. Sci. Technol.
,
31
(
9
), pp.
1011
1015
.
27.
Barnoush
,
A.
,
2011
, “
Hydrogen Embrittlement
,”
Ph.D. dissertation
,
Saarland University
,
Saarbrücken, Germany
.
28.
Murakami
,
Y.
, and
Matsunaga
,
H.
,
2006
, “
The Effect of Hydrogen on Fatigue Properties of Steels Used for Fuel Cell Systems
,”
Int. J. Fatigue
,
28
(
11
), pp.
1509
1520
.
29.
Venegas
,
V.
,
Caleyo
,
F.
,
González
,
J. L.
,
Baudin
,
T.
,
Hallen
,
J. M.
, and
Penelle
,
R.
,
2005
, “
EBSD Study of Hydrogen-Induced Cracking in API-5 L-X46 Pipeline Steel
,”
Scr. Mater.
,
52
(
2
), pp.
147
152
.
30.
Fujita
,
S.
,
Matsuoka
,
S.
,
Murakami
,
Y.
, and
Marquis
,
G.
,
2010
, “
Effect of Hydrogen on Mode II Fatigue Crack Behavior of Tempered Bearing Steel and Microstructural Changes
,”
Int. J. Fatigue
,
32
(
6
), pp.
943
951
.
31.
Uyama
,
H.
,
Yamada
,
H.
,
Hidaka
,
H.
, and
Mitamura
,
N.
,
2011
, “
The Effects of Hydrogen on Microstructural Change and Surface Originated Flaking in Rolling Contact Fatigue
,”
Tribol. Online
,
6
(
2
), pp.
123
132
.
32.
Ruellan
,
A.
,
Cavoret
,
J.
,
Ville
,
F.
,
Kleber
,
X.
, and
Liatard
,
B.
,
2017
, “
Understanding White Etching Cracks in Rolling Element Bearings: State of Art and Multiple Driver Transposition on a Twin-Disc Machine
,”
Proc. Inst. Mech. Eng. J.: J. Eng. Tribol.
,
231
(
2
), pp.
203
220
.
33.
Paladugu
,
M.
, and
Hyde
,
R. S.
,
2017
, “
White Etching Matter Promoted by Intergranular Embrittlement
,”
Scr. Mater.
,
130
, pp.
219
222
.
34.
Mahmoudi
,
B.
,
Doll
,
G. L.
,
Hager
,
C. H.
, Jr.
, and
Evans
,
R. D.
,
2016
, “
Influence of a WC/aC:H Tribological Coating on Micropitting Wear of Bearing Steel
,”
Wear
,
350
, pp.
107
115
.
35.
Mahmoudi
,
B.
,
Tury
,
B.
,
Hager
,
C. H.
, and
Doll
,
G. L.
,
2015
, “
Effects of Black Oxide and a WC/a-C:H Coating on the Micropitting of SAE 52100 Bearing Steel
,”
Tribol. Lett.
,
58
(
2
), pp.
1
9
.
36.
ISO/TR 15144-1:2010
, “Calculation of Micropitting Load Capacity of Cylindrical Spur and Helical Gears—Part 1: Introduction and Basic Principles,” BSI Standard Publication, Switzerland, pp.
1
56
.
37.
Cen
,
H.
,
Morina
,
A.
,
Neville
,
A.
,
Pasaribu
,
R.
, and
Nedelcu
,
I.
,
2012
, “
Effect of Water on ZDDP Anti-Wear Performance and Related Tribochemistry in Lubricated Steel/Steel Pure Sliding Contacts
,”
Tribol. Int.
,
56
, pp.
47
57
.
38.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Phase Transformations Associated With Micropitting in Rolling/Sliding Contacts
,”
J. Mater. Sci.
,
40
(
18
), pp.
4767
4774
.
39.
Gould
,
B.
, and
Greco
,
A.
,
2015
, “
The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks
,”
Tribol. Lett.
,
60
(
2
), pp.
1
3
.
You do not currently have access to this content.