Graphical Abstract Figure

Modeling of Aerodynamic Leidenfrost Effect of Oil Droplets

Graphical Abstract Figure

Modeling of Aerodynamic Leidenfrost Effect of Oil Droplets

Close modal

Abstract

The objective of this study was to develop a numerical model for the aerodynamic Leidenfrost effect (ALE) to simulate the levitation of a lubricant drop near a surface at a high speed. In this model, the oil droplet is treated as a deformable soft elastic body, whose weight is supported by the air film lubrication pressure. The Young's modulus of the oil droplet is represented by its internal pressure and surface tension. In this modeling approach, the two-dimensional compressible Reynolds equation for air and elasticity equations were discretized using the finite difference approach. The discretized system of equations was then numerically solved in matlab. The effects of various droplet weights, surface tensions, and air speeds on the air film thickness and pressure profiles were investigated. The numerical model developed was utilized to obtain expressions for minimum and central film thickness as well as maximum pressure in ALE as functions of dimensionless speed and load. This article provides the details necessary to simulate the ALE across a range of loads and speeds.

References

1.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
197
215
.
2.
Biance
,
A.-L.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2003
, “
Leidenfrost Drops
,”
Phys. Fluids
,
15
(
6
), pp.
1632
1637
.
3.
Chen
,
C.
,
Shi
,
W.-Y.
, and
Feng
,
L.
,
2024
, “
Critical Radius Deviated From Leidenfrost State of Droplets on Liquid Layer
,”
Phys. Fluids
,
36
(
10
).
4.
Gauthier
,
A.
,
Bird
,
J. C.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2016
, “
Aerodynamic Leidenfrost Effect
,”
Phys. Rev. Fluids
,
1
(
8
), p.
084002
.
5.
Sreenivas
,
K. R.
,
De
,
P. K.
, and
Arakeri
,
J. H.
,
1999
, “
Levitation of a Drop Over a Film Flow
,”
J. Fluid Mech.
,
380
, pp.
297
307
.
6.
Lhuissier
,
H.
,
Tagawa
,
Y.
,
Tran
,
T.
, and
Sun
,
C.
,
2013
, “
Levitation of a Drop Over a Moving Surface
,”
J. Fluid Mech.
,
733
, p.
R4
.
7.
Sawaguchi
,
E.
,
Matsuda
,
A.
,
Hama
,
K.
,
Saito
,
M.
, and
Tagawa
,
Y.
,
2019
, “
Droplet Levitation Over a Moving Wall With a Steady Air Film
,”
J. Fluid Mech.
,
862
, pp.
261
282
.
8.
Duchesne
,
A.
,
Savaro
,
C.
,
Lebon
,
L.
,
Pirat
,
C.
, and
Limat
,
L.
,
2013
, “
Multiple Rotations of a Drop Rolling Inside a Horizontal Circular Hydraulic Jump
,”
Europhys. Lett.
,
102
(
6
), p.
64001
.
9.
Gauthier
,
A.
,
Bouillant
,
A.
,
Clanet
,
C.
, and
Quéré
,
D.
,
2018
, “
Aerodynamic Repellency of Impacting Liquids
,”
Phys. Rev. Fluids
,
3
(
5
), p.
054002
.
10.
Smith
,
F. T.
,
Li
,
L.
, and
Wu
,
G. X.
,
2003
, “
Air Cushioning With a Lubrication/Inviscid Balance
,”
J. Fluid Mech.
,
482
, pp.
291
318
.
11.
Prahl
,
J. M.
, and
Hamrock
,
B. J.
,
1985
, “Mechanics of a Gaseous Film Barrier to Lubricant Wetting of Elastohydrodynamically Lubricated Conjunctions (No. NASA-TP-2500).”
12.
Landau
,
L.
, and
Levich
,
B.
,
1988
, “Dragging of a Liquid by a Moving Plate,”
Dynamics of Curved Fronts
,
Elsevier
, pp.
141
153
.
13.
Derjaguin
,
B.
,
1943
, “
Thickness of Liquid Layer Adhering to Walls of Vessels on Their Emptying and the Theory of Photo-and Motion-Picture Film Coating
,”
CR (Dokl.) Acad. Sci. URSS
, pp.
13
16
.
14.
Gross
,
W. A.
,
Matsch
,
L. A.
,
Castelli
,
V.
,
Eshel
,
A.
,
Vohr
,
J. H.
, and
Wildmann
,
M.
,
1980
, “
Fluid Film Lubrication
,” https://www.osti.gov/biblio/7082536, Accessed Sept. 7, 2024.
15.
Bhushan
,
B.
,
2013
,
Introduction to Tribology
,
Wiley
,
New York
.
16.
Al-Bender
,
F.
,
2021
,
Air Bearings: Theory, Design and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
17.
Dowson
,
D.
, and
Swales
,
P. D.
,
1967
, “
An Elastohydrodynamic Approach to the Problem of the Reciprocating Seal
,”
Proceedings of 3rd International Conference on Fluid Sealing
,
Cambridge, UK
.
18.
Hooke
,
C. J.
,
Lines
,
D. J.
, and
O’Donoghue
,
J. P.
,
1966
, “
Third Paper: Elastohydrodynamic Lubrication of O-Ring Seals
,”
Proc. Inst. Mech. Eng.
,
181
(
1
), pp.
205
223
.
19.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1978
, “
Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction
,”
ASME J. Lubr. Tech.
,
100
(
2
), pp.
236
245
.
20.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1979
, “
Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus: II—Starved Conjunction
,”
ASME J. Lubr. Tech.
,
101
(
1
), pp.
92
98
.
21.
Biswas
,
S.
, and
Snidle
,
R. W.
,
1976
, “
Elastohydrodynamic Lubrication of Spherical Surfaces of Low Elastic Modulus
,”
ASME J. Lubr. Tech.
,
98
(
4
), pp.
524
529
.
22.
Baglin
,
K. P.
, and
Archard
,
J. F.
,
1972
, “
An Analytic Solution of the Elastohydrodynamic Lubrication of Materials of Low Elastic Modulus
,”
Proceedings of Second Symposium on Elastohydrodynamic Lubrication
,
London, UK
,
Apr. 11–13
,
Institution of Mechanical Engineers
, p.
13
.
23.
Sadeghi
,
F.
,
Arya
,
U.
,
Aamer
,
S.
, and
Meinel
,
A.
,
2024
, “
A Review of Computational Fluid Dynamics Approaches Used to Investigate Lubrication of Rolling Element Bearings
,”
ASME J. Tribol.
,
146
(
10
), p. 100801.
24.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
25.
Tohyama
,
M.
,
Ohmiya
,
Y.
,
Hirose
,
M.
,
Matsuyama
,
H.
,
Toda
,
T.
,
Hasegawa
,
K.
,
Onizuka
,
T.
,
Sato
,
H.
,
Yokoi
,
M.
, and
Sato
,
N.
,
2024
, “
Visualization of Oil-Lubrication Ball Bearings at High Rotational Speeds
,”
Front. Mech. Eng.
,
10
, p.
1416656
.
26.
Wei
,
C.
,
Wu
,
W.
,
Li
,
T.
,
Massi
,
F.
, and
Zhao
,
J.
,
2025
, “
Experimental and Simulation Analysis of Oil-Air Two-Phase Flow Characteristics in High-Speed Bearings
,”
Tribol. Int.
,
201
, p.
110281
.
27.
Arya
,
U.
,
Peterson
,
W.
,
Sadeghi
,
F.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
Investigation of Oil Flow in a Ball Bearing Using Bubble Image Velocimetry and CFD Modeling
,”
Tribol. Int.
,
177
, p.
107968
.
28.
Shan
,
W.
,
Chen
,
Y.
,
Huang
,
J.
,
Wang
,
X.
,
Han
,
Z.
, and
Wu
,
K.
,
2023
, “
A Multiphase Flow Study for Lubrication Characteristics on the Internal Flow Pattern of Ball Bearing
,”
Results Eng.
,
20
, p.
101429
.
29.
Aamer
,
S.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Peterson
,
W.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2022
, “
Lubrication, Flow Visualization, and Multiphase CFD Modeling of Ball Bearing Cage
,”
Tribol. Trans.
,
65
(
6
), pp.
1088
1098
.
30.
Arya
,
U.
,
Sadeghi
,
F.
,
Aamer
,
S.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
In Situ Visualization and Analysis of Oil Starvation in Ball Bearing Cages
,”
Tribol. Trans.
,
66
(
5
), pp.
965
978
.
31.
Tian
,
J.
,
Zhang
,
C.
,
Wang
,
Z.
,
Liang
,
H.
, and
Guo
,
D.
,
2022
, “
Simulation Sudden Oil Supply in Starved High-Speed Angular Contact Ball Bearing
,”
Tribol. Int.
,
175
, p.
107784
.
32.
Aamer
,
S.
,
Sadeghi
,
F.
, and
Meinel
,
A.
,
2023
, “
Cylindrical Roller Bearing Cage Pocket Lubrication
,”
Tribol. Int.
,
188
, p.
108851
.
33.
Chiu
,
Y. P.
,
2008
, “
An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems
,”
Tribol. Trans.
,
17
(
1
), pp.
22
35
.
34.
Deng
,
S.
,
Zhao
,
G.
,
Qian
,
D.
,
Jiang
,
S.
, and
Hua
,
L.
,
2022
, “
Investigation of Oil–Air Flow and Temperature for High-Speed Ball Bearings by Combining Nonlinear Dynamic and Computational Fluid Dynamics Models
,”
ASME J. Tribol.
,
144
(
7
), p. 071204.
35.
Jiang
,
L.
,
Liu
,
Z.
,
Huang
,
W.
,
Lyu
,
Y.
,
Li
,
Y.
,
Gao
,
W.
, and
Liu
,
Y.
,
2024
, “
Influence and Optimization of Dual-Orifice Jet Nozzles on Oil Capture Performance of Under-Race Lubrication With a Radial Oil Scoop for High-Speed Bearings in Aero-Engine
,”
Phys. Fluids
,
36
(
9
).
36.
Chen
,
H.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2021
, “
Patterns of Interfacial Flow Around a Lubricated Rolling Point Contact Region
,”
Phys. Fluids
,
33
(
10
), p.
102118
.
37.
Chen
,
H.
,
Wang
,
W.
,
Zhao
,
Z.
, and
Liang
,
H.
,
2022
, “
Evolution and Flow Maps of the Oil Layer in Successive Rolling Point Contact Systems: Bearing as a Case
,”
Phys. Fluids
,
34
(
3
), p.
032110
.
38.
Yu
,
J.
,
Zhu
,
S.
,
Yuan
,
W.
,
Chen
,
X.
,
He
,
L.
, and
Guo
,
Q.
,
2023
, “
Investigation on the Friction Heat Generation Rate of Ball Bearings at Ultra-High Rotation Speed
,”
Int. J. Adv. Manuf. Technol.
,
128
(
1–2
), pp.
57
79
.
39.
Yang
,
C.
,
Zhu
,
M.
,
Qiu
,
M.
,
Chu
,
Y.
,
Dong
,
Y.
, and
Chen
,
F.
,
2024
, “
Thermal Characterization of Cylindrical Roller Bearings Based on Thermal-Structural Coupling Approach
,”
Adv. Mech. Eng.
,
16
(
8
).
40.
Olaru
,
D. N.
, and
Gafitanu
,
M. D.
,
1997
, “
Lubrication Safety in High-Speed Ball-Bearings
,”
Lubr. Sci.
,
9
(
4
), pp.
365
389
.
41.
Farfan-Cabrera
,
L. I.
,
2019
, “
Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends
,”
Tribol. Int.
,
138
, pp.
473
486
.
42.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
43.
Mohapatra
,
C. K.
,
Schlautman
,
J.
,
Pandey
,
A.
,
Wang
,
C.
, and
Srinivasan
,
C.
,
2024
, “A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication,”
SAE Technical Paper
.
44.
Sadeghi
,
F.
,
2010
, “Elastohydrodynamic Lubrication,”
Tribology and Dynamics of Engine and Powertrain
,
H.
Rahnejat
, ed.,
Elsevier
,
New York
, pp.
171
226e
.
45.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
.
46.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Quantitative EHL—Seventeen Years In
,”
ASME J. Tribol.
,
146
(
8
), p. 080801.
47.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1990
, “
Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Contacts
,”
ASME J. Tribol.
,
112
(
2
), pp.
189
195
.
48.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
(
2
), pp.
390
396
.
49.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Elastohydrodynamic Lubrication of Point Contact
,”
ASME J. Tribol.
,
113
(
4
), pp.
703
711
.
50.
Dowson
,
D.
,
Taylor
,
C. M.
, and
Zhu
,
G.
,
1992
, “
A Transient Elastohydrodynamic Lubrication Analysis of a Cam and Follower
,”
J. Phys. D: Appl. Phys.
,
25
(
1A
), pp.
A313
A320
.
51.
Xue
,
Y.-K.
,
Gethin
,
D. T.
, and
Lim
,
C. H.
,
1994
, “
Numerical Modelling of the Contact Between Lithographic Printing Press Rollers by Soft EHL Theory
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
208
(
4
), pp.
257
268
.
52.
de Vicente
,
J.
,
Stokes
,
J. R.
, and
Spikes
,
H. A.
,
2005
, “
The Frictional Properties of Newtonian Fluids in Rolling–Sliding Soft-EHL Contact
,”
Tribol. Lett.
,
20
(
3–4
), pp.
273
286
.
53.
Chang
,
Y. B.
,
Chambers
,
F. W.
, and
Shelton
,
J. J.
,
1996
, “
Elastohydrodynamic Lubrication of Air-Lubricated Rollers
,”
ASME J. Tribol.
,
118
(
3
), pp.
623
628
.
54.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer
,
Berlin, Heidelberg
.
55.
Venner
,
C. H.
,
1991
, “
Multilevel Solution of the EHL Line and Point Contact Problems
,”
University of Twente
,
Enschede, Netherlands
.
56.
Behroozi
,
F.
,
2022
, “
A Fresh Look at the Young-Laplace Equation and Its Many Applications in Hydrostatics
,”
Phys. Teach.
,
60
(
5
), pp.
358
361
.
57.
Laufer
,
Z.
,
Diamant
,
Y.
,
Gill
,
M.
, and
Fortuna
,
G.
,
1978
, “
A Simple Dilatometric Method for Determining Poisson's Ratio of Nearly Incompressible Elastomers
,”
Int. J. Polym. Mater. Polym. Biomater.
,
6
(
3–4
), pp.
159
174
.
You do not currently have access to this content.