The primary requirement for high pressure turbine heat transfer designs is to predict blade metal temperature. There has been a considerable recent effort in developing coupled fluid convection and solid conduction (conjugate) heat transfer prediction methods. They are, however, confined to steady flows. In the present work, a new approach to conjugate analysis for periodic unsteady flows is proposed and demonstrated. First, a simple model analysis is carried out to quantify the huge disparity in time scales between convection and conduction, and the implications of this for steady and unsteady conjugate solutions. To realign the greatly mismatched time scales, a hybrid approach of coupling between the time-domain fluid solution and frequency-domain solid conduction is adopted in conjunction with a continuously updated Fourier transform at the interface. A novel semi-analytical harmonic interface condition is introduced, initially for reducing the truncation error in finite-difference discretization. More interestingly, the semi-analytical interface condition enables the unsteady conjugate coupling to be achieved without simultaneously solving the unsteady temperature field in the solid domain. This unique feature leads to a very efficient and accurate unsteady conjugate solution approach. The fluid and solid solutions are validated against analytical solutions and experimental data. The implemented unsteady conjugate method has been demonstrated for a turbine cascade subject to inlet unsteady hot streaks.

1.
Bohn
,
D.
,
Bonhoff
,
B.
, and
Schonenborn
,
H.
, 1995, “
Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vanes
,”
ASME
Paper No. GT 95-108.
2.
Han
,
Z. X.
,
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 2000, “
Simultaneous Prediction of External Flow-Field and Temperature in Internal Cooled 3D Turbine Blade Material
,”
ASME
GT 2000-GT-253.
3.
Garg
,
V. K.
, 2002, “
Heat transfer Research on Gas Turbine Airfoils at NASA GRC
,”
Int. J. Heat Fluid Flow
0142-727X,
23
(
2
), pp.
109
136
.
4.
York
,
W. D.
, and
Leylek
,
J. H.
, 2003, “
3-Dimensional Conjugate Heat transfer Simulation of an Internally Cooled Gas Turbine Vane
,”
ASME
Paper No. GT-2003-38551.
5.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodrigaez
,
F.
, and
Stienthorsson
,
E.
, 2003, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT-2003-38553.
6.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braemhussche
,
R.
, 2007, “
Numerical Study of Heat Transfer in Micro Gas Turbines
,”
ASME J. Turbomach.
0889-504X,
129
(
4
), pp.
835
841
.
7.
Amaral
,
S.
,
Verstraete
,
T.
,
Van den Braemhussche
,
R.
, and
Arts
,
T.
, 2008, “
Design and Optimization of Internal Cooling Channels of a HP Turbine Blade, Part 1, Methodology
,”
ASME
Paper No. GT2008-51077.
8.
Starke
,
C.
,
Janke
,
E.
,
Hofer
,
T.
, and
Lengani
,
D.
, 2008, “
Comparison of a Conventional Thermal Analysis of a Turbine Cascade to a Full Conjugate Heat Transfer Computation
,”
ASME
Paper No. GT2008-51151.
9.
Goormans-Francke
,
C.
,
Carabin
,
G.
, and
Hirsch
,
Ch.
, 2008, “
Mesh Generation for Conjugate Heat Transfer Analysis of a Cooled High Pressure Turbine Stage
,”
ASME
Paper No. GT2008-50660.
10.
Denton
,
J. D.
, 1992, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachine
,”
ASME J. Turbomach.
0889-504X,
114
(
1
), pp.
18
26
.
11.
Arnone
,
A.
, 1994, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multi-Grid Method
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
435
445
.
12.
He
,
L.
, 2000, “
3D Navier-Stokes Analysis of Rotor-Stator Interactions in Axial flow Turbines
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
, pp.
13
22
.
13.
He
,
L.
,
Chen
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
, 2002, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
564
571
.
14.
He
,
L.
, 2008, “
Harmonic Solution of Unsteady Flow Around Blade With Separation
,”
AIAA J.
0001-1452,
46
(
6
), pp.
1299
1307
.
15.
Sparlart
,
P. R.
, and
Allmaras
,
S. R.
, 1992, “
A One-equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
16.
Jameson
,
A.
, 1991, “
Time-Dependent Calculations Using Multi-Grid, With Applications to Unsteady Flows Past Airfoil and Wings
,” AIAA Paper No. 91-1596.
17.
He
,
L.
, 1993, “
New Two-Grid Acceleration Method for Unsteady Navier-Stokes Calculations
,”
J. Propul. Power
0748-4658,
9
(
2
), pp.
272
280
.
18.
Chana
,
K. S.
,
Povey
,
T.
, and
Jones
,
T. V.
, 2003, “
Heat Transfer and Aerodynamics of Intermediate Pressure Nozzle Guide Vane With and Without Inlet Temperature Non-Uniformity
,”
ASME
Paper No. GT 2003-38466.
19.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
20.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurement in Short Duration Facilities
,” Paper No. AGARD AG-165.
21.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1159
1168
.
22.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
, 1997, “
Radial Conduction Effects in Transient Heat Transfer Experiments
,”
Aeronaut. J.
0001-9240,
101
(
2215
), pp.
209
212
.
23.
Owen
,
J. M.
, 2007, “
Thermodynamic Analysis Of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME
Paper No. GT2007-27387.
24.
He
,
L.
, 1992, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
0001-1452,
30
(
11
), pp.
2730
2735
.
25.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
, 2002, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
0748-4658,
18
, pp.
1139
1152
.
26.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
, 2007, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
J. Propul. Power
0748-4658,
23
(
6
), pp.
1235
1241
.
27.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
, 1970, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
92
(
4
), pp.
359
370
.
28.
Shang
,
T.
, and
Epstein
,
A. H.
, 1997, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
544
553
.
You do not currently have access to this content.