The steady improvement of aircraft engine performance has led toward more compact engine cores with increased structural loads. Compact single-stage high-pressure turbines allow high power extraction, operating in the low supersonic range. The shock waves formed at the airfoil trailing edge contribute substantially to turbine losses, mainly due to the shock-boundary layer interactions as well as high-frequency forces on the rotor. We propose to control the vane trailing edge shock interaction with the downstream rotor, using a pulsating vane-trailing-edge-coolant at the rotor passing frequency. A linear cascade of transonic vanes was investigated at different Mach numbers, ranging from subsonic to supersonic regimes (0.8, 1.1) at two engine representative Reynolds numbers (4 × 106 and 6 × 106). The steady and unsteady heat flux was retrieved using thin-film two-layered gauges. The complexity of the tests required the development of an original heat transfer postprocessing approach. In a single test, monitoring the heat flux data and the wall temperature we obtained the adiabatic wall temperature and the convective heat transfer coefficient. The right-running trailing edge shock wave impacts on the neighboring vane suction side. The impact of the shock wave on the boundary layer creates a separation bubble, which is very sensitive to the intensity and angle of the shock wave. Increasing the coolant blowing rate induces the shock to be less oblique, moving the separation bubble upstream. A similar effect is caused by the pulsations of the coolant

References

1.
Paniagua
,
G.
,
Yasa
,
T.
,
de la Loma
,
A.
,
Castillion
,
L.
, and
Coton
,
T.
,
2008
, “
Unsteady Strong Shock Interactions in a Transonic Turbine: Experimental and Numerical Analysis
,”
J. Propul. Power
,
24
(
4
), pp.
722
731
.
2.
Denton
,
J. D.
, and
Xu
,
L.
,
1990
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
277
285
.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
4.
Motallebi
,
F.
, and
Norbury
,
J. F.
,
1981
, “
The Effect of Base Bleed on Vortex Shedding and Base Pressure in Compressible Flow
,”
J. Fluid Mech.
,
110
, pp.
273
292
.
5.
Kapteijn
,
C.
,
Amecke
,
J.
, and
Michalassi
,
V.
,
1996
, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Ejection: Part I—Experimental Approach
,”
ASME J. Turbomach.
,
118
(
3
), pp.
519
528
.
6.
Raffel
,
M.
, and
Kost
,
F.
,
1998
, “
Investigation of Aerodynamic Effects of Coolant Ejection at the Trailing Edge of a Turbine Blade Model by PIV and Pressure Measurements
,”
Exp. Fluids
,
24
(5), pp.
447
461
.
7.
Saracoglu
,
B. H.
,
Paniagua
,
G.
,
Sanchez
,
J.
, and
Rambaud
,
P.
,
2013
, “
Effects of Blunt Trailing Edge Flow Discharge in Supersonic Regime
,”
Comput. Fluids
,
88
, pp.
200
209
.
8.
Andrews
,
S. A.
,
Mahallati
,
A.
,
Allan
,
W. D.
, and
Benner
,
M. W.
,
2009
, “
Experimental and Computational Investigation of the Mid-Span Flowfield in a Transonic Turbine Nozzle Cascade
,”
19th International Symposium on Airbreathing Engines
, Montreal, Canada, Sept. 7–11, Paper No. ISABE-2009-123.
9.
Sieverding
,
C. H.
,
Stanislas
,
M.
, and
Snoeck
,
J.
,
1980
, “
The Base Pressure Problem in Transonic Turbine Cascades
,”
ASME J. Eng. Power
,
102
(
3
), pp.
711
718
.
10.
Sieverding
,
C. H.
,
1983
, “
The Influence of Trailing Edge Ejection on the Base Pressure in Transonic Turbine Cascades
,”
ASME J. Eng. Power
,
105
(
2
), pp.
215
222
.
11.
Saracoglu
,
B. H.
,
Paniagua
,
G.
,
Salvadori
,
S.
,
Tomasoni
,
F.
,
Duni
,
S.
,
Yasa
,
T.
, and
Miranda
,
A.
,
2012
, “
Trailing Edge Shock Modulation by Pulsating Coolant Ejection
,”
Appl. Therm. Eng.
,
48
, pp.
1
10
.
12.
Dunn
,
M. G.
, and
Stoddard
,
F. J.
,
1977
,
Studies of Heat Transfer to Gas Turbine Components
,
Calspan
,
Buffalo, NY
, pp.
1
48
.
13.
Nicholson
,
J. H.
,
Forest
,
A. E.
,
Oldfield
,
M. L. G.
, and
Schultz
,
D. L.
,
1984
, “
Heat Transfer Optimized Turbine Rotor Blades—An Experimental Study Using Transient Techniques
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
173
182
.
14.
Arts
,
T.
, and
Lambert de Rouvroit
,
L.
,
1992
, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
15.
Dunn
,
M. G.
,
1986
, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time-Averaged Results
,”
ASME J. Turbomach.
,
108
(
1
), pp.
90
97
.
16.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.
17.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2015
, “
Improved Methodologies for Time Resolved Heat Transfer Measurements, Demonstrated on an Unshrouded Transonic Turbine Casing
,”
ASME
Paper No. TURBO-16-1051.
18.
Pinilla
,
V.
,
Solano
,
J. P.
,
Paniagua
,
G.
, and
Anthony
,
R. J.
,
2012
, “
Adiabatic Wall Temperature Evaluation in a High Speed Turbine
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091601
.
19.
Doorly
,
J. E.
,
Oldfield
,
M. L. G.
, and
Jones
,
T. V.
,
1973
, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1159
1168
.
20.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
,
1986
, “
New Heat Transfer Gauges for Use on Multilayered Substrates
,”
ASME J. Turbomach.
,
108
(
1
), pp.
153
160
.
21.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
22.
Iliopoulou
,
V.
,
Denos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
,
2004
, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
,
126
(
4
), pp.
570
577
.
23.
Schultz
,
L. D.
, and
Jones
,
T. V.
,
1973
Heat Transfer Measurements in Short Duration Facilities
,” AGARDograph Report,
Report No. 165
.
24.
Billard
,
N.
,
Iliopoulou
,
V. F.
, and
Denos
,
R.
,
2002
Data Reduction and Thermal Product Determination for Single and Multi-Layered Substrates Thin-Film Gauges
,”
16th Symposium on Measuring Techniques
, Cambridge, UK, Sept., Paper No. 6–2.
25.
Crank
,
J.
, and
Nicolson
,
E.
,
1996
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Adv. Comput. Math.
,
6
(
1
), pp.
207
226
.
26.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
.
27.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
, III
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
T. E.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer
,”
ASME
Paper No. 2000-GT-0202.
28.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2014
, “
Uncertainty Analysis of Adiabatic Wall Temperature Measurements in Turbine Experiments
,”
Appl. Therm. Eng.
,
82
, pp.
170
181
.
29.
Guo
,
S. M.
,
Spencer
,
M. C.
,
Lock
,
G. D.
,
Jones
,
T. V.
, and
Harvey
,
N. W.
,
1995
, “
The Application of Thin Film Gauges on Flexible Plastic Substrates to the Gas Turbine Situation
,”
ASME
Paper No. 95-GT-357.
30.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
Improved Fast-Response Heat Transfer Instrumentation for Short-Duration Wind Tunnels
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1897
1909
.
31.
Shultz
,
D. L.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
, and
Daniels
,
L. C.
,
1978
, “
A New Transient Facility for the Measurement of Heat Transfer Rates in High Temperature Problems in Gas Turbine Engines
,” AGARD CP 229, Paper No. 28.
32.
Sieverding
,
C. H.
,
Arts
,
T.
,
Dénos
,
R.
, and
Martelli
,
F.
,
1996
, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
,
118
(
2
), pp.
291
300
.
33.
Jones
,
T. V.
,
Shultz
,
D. L.
, and
Hendley
,
A. D.
,
1973
, “
On the Flow in an Isentropic Free Piston Tunnel
,” ARC R&M 3731.
34.
Gonzalez
,
M.
,
Paniagua
,
G.
,
Saracoglu
,
B.
, and
Tiseira
,
A.
,
2010
, “
Pulsating Cooling System for High-Pressure Turbine Blades
,”
AIAA
Paper No. 2010-4587.
35.
Dolling
,
D. S.
,
2001
, “
Fifty Years of Shock Wave Boundary Layer Interaction Research: What's Next?
,”
AIAA J.
,
39
(
8
), pp.
1517
1531
.
36.
D'Ambrosio
,
D.
,
2002
, “
A Study on Shock Wave-Boundary Layer Interactions in High-Speed Flows
,”
4th European Symposium Aerothermodynamics for Space Vehicles
, Capua, Italy, Oct. 15–18, pp. 733–742.
37.
Dupont
,
P.
,
Haddad
,
C.
, and
Debieve
,
J. F.
,
2006
, “
Space and Time Organization in a Shock-Induced Separated Boundary Layer
,”
J. Fluid Mech.
,
559
, pp.
255
277
.
38.
Gifford
,
A. R.
,
Diller
,
T. E.
, and
Vlachos
,
P. P.
,
2011
, “
The Physical Mechanism of Heat Transfer Augmentation in Stagnating Flows Subject to Freestream Turbulence
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021901
.
39.
Johnson
,
A. B.
,
Rigby
,
M. J.
, and
Oldfield
,
M. L. G.
,
1989
, “
Unsteady Aerodynamic Phenomena in a Simulated Wake and Shock Wave Passing Experiment
,” AGARD,
Paper No. CP-468
.
40.
Herbert Law
,
C.
,
1976
, “
Supersonic Shock Wave Turbulent Boundary Layer Interactions
,”
AIAA J.
,
14
(
6
), pp.
730
734
.
41.
Humble
,
R. A.
,
Scarano
,
F. B.
, and
van Oudhesden
,
W.
,
2007
, “
Unsteady Flow Organization of a Shock wave/Turbulent Boundary Layer Interaction
,”
Exp. Fluids
,
43
, pp.
173
183
.
42.
Horstman
,
C. C.
,
Settles
,
G. S.
,
Vas
,
I. E.
,
Bogdonoff
,
S. M.
, and
Hung
,
C. M.
,
1977
, “
Reynolds Number Effects on Shock-Wave Turbulent Boudnary-Layer Interaction
,”
AIAA J.
,
15
(
8
), pp.
1152
1158
.
43.
Katzer
,
E.
,
1988
, “
On the Length Scales of Laminar Shock/Boundary Layer Interaction
,”
J. Fluid Mech.
,
206
, pp.
477
496
.
44.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.