Abstract

Purge flow is bled from the upstream compressor and supplied to the under-platform region to prevent hot main gas path ingress that damages vulnerable under-platform hardware components. A majority of turbine rim seal research has sought to identify methods of improving sealing technologies and understanding the physical mechanisms that drive ingress. While these studies directly support the design and analysis of advanced rim seal geometries and purge flow systems, the studies are limited in their applicability to real-time monitoring required for condition-based operation and maintenance. As operational hours increase for in-service engines, this lack of rim seal performance feedback results in progressive degradation of sealing effectiveness, thereby leading to reduced hardware life. To address this need for rim seal performance monitoring, this study utilizes measurements from a one-stage turbine research facility operating with true-scale engine hardware at engine-relevant conditions. Time-resolved pressure measurements collected from the rim seal region are regressed with sealing effectiveness through the use of common machine learning techniques to provide real-time feedback of sealing effectiveness. Two modeling approaches are presented that use a single sensor to predict sealing effectiveness accurately over a range of two turbine operating conditions. Results show that an initial purely data-driven model can be further improved using domain knowledge of relevant turbine operations, which yields sealing effectiveness predictions within 3% of measured values.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
Paper No. GT2017-63205
.
2.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.
3.
Urban
,
L.
,
1969
,
Gas Turbine Engine Parameter Interrelationships
,
HSD UTC
,
Windsor Locks, CT
.
4.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Indianapolis, IN
,
Paper No. AIAA 94-2703
.
5.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
6.
Clark
,
K.
,
Barringer
,
M.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
Paper No. GT2016-58095
.
7.
Denton
,
J. D.
, and
USW
,
S.
,
1981
, “
Use of a Tracer Gas Technique to Study Mixing in a Low Speed Turbine
,”
ASME Gas Turbine Conference and Products Show
,
Houston, TX
,
Paper No. 81-GT-86
.
8.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
9.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
10.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
11.
Savov
,
S. S.
, and
Atkins
,
N. R.
,
2017
, “
A Rim Seal Ingress Model Based on Turbulent Transport
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
Paper No. GT2017-63531
.
12.
Bohn
,
D.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
Paper No. 95-GT-143
.
13.
Rabs
,
M.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
ASME Turbo Expo 2009
,
Orlando, FL
,
Paper No. GT2009-59965
.
14.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.
15.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J.-F.
, and
Marini
,
R.
,
2010
, “
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME Turbo Expo 2010
,
Glasgow, UK
,
Paper No. GT2010-22729
.
16.
Johnson
,
B. V.
,
Wang
,
C.-Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With Two Cd s and Effects of Swirl in Seals
,”
ASME Turbo Expo
,
Berlin, Germany
,
Paper No. GT2008-50650
.
17.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.
18.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
19.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
438
.
20.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
21.
Owen
,
J. M.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2015
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.
22.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
227
(
2
), pp.
167
178
.
23.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
24.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021020
.
25.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.
26.
Darby
,
P. W.
,
Mesny
,
A. W.
,
De Cosmo
,
G.
,
Carnevale
,
M.
,
Lock
,
G.
,
Scobie
,
J. A.
, and
Sangan
,
C.
,
2020
, “
Conditioning of Leakage Flows in Gas Turbine Rotor-Stator Cavities
,”
ASME Turbo Expo 2020
,
Virtual, Online
,
Paper No. GT2020-14308
.
27.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2018
, “
Unsteady Computation of Ingress Through Turbine Rim Seals
,”
ASME Turbo Expo 2018
,
Oslo, Norway
,
Paper No. GT2018-75321
.
28.
Patinios
,
M.
,
Ong
,
I. L.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Sangan
,
C. M.
,
2019
, “
Influence of Leakage Flows on Hot Gas Ingress
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021010
.
29.
Balasubramanian
,
J.
,
Pathak
,
P. S.
,
Thiagarajan
,
J. K.
,
Singh
,
P.
,
Roy
,
R. P.
, and
Mirzamoghadam
,
A. V.
,
2015
, “
Experimental Study of Ingestion in the Rotor-Stator Disk Cavity of a Subscale Axial Turbine Stage
,”
ASME J. Turbomach.
,
137
(
9
), p.
091010
.
30.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME Turbo Expo 2014
,
Dusseldorf, Germany
,
Paper No. GT2014-25570
.
31.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
32.
Siroka
,
S.
,
Monge-Concepción
,
I.
,
Berdanier
,
R. A.
,
Barringer
,
M.
, and
Thole
,
K. A.
,
2021
, “
Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow
,”
ASME Turbo Expo 2021
,
Virtual, Online
,
Paper No. GT2021-59285
.
33.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2014
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons
,
New York
.
34.
Monge-Concepción
,
I.
,
Siroka
,
S.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2021
, “
Unsteady Turbine Rim Sealing and Vane Trailing Edge Flow Effects
,”
ASME Turbo Expo 2021
,
Virtual, Online
,
GT2021-59273
.
35.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
International Gas Turbine & Aeroengine Congress & Exhibition
,
Indianapolis, IN
,
Paper No. 99-GT-248
.
36.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
Turbo Expo 2000
,
Munich, Germany
,
Paper No. 2000-GT-284
.
37.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
DeVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME Turbo Expo 2004
,
Vienna, Austria
,
Paper No. GT2004-53829
.
38.
Wang
,
C.-Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2014
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
39.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
40.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
41.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
ASME Turbo Expo
,
Barcelona, Spain
,
Paper No. GT2006-90307
.
42.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
43.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
.
44.
Laskowski
,
G. M.
,
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Ledezma
,
G.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041020
.
45.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
, “
Numerical Studies of Turbine Rim Sealing Flows on a Chute Seal Configuration
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Paper No. ETC2017-284.
46.
Town
,
J.
,
Averbach
,
M.
, and
Camci
,
C.
,
2016
, “
Experimental and Numerical Investigation of Unsteady Structures Within the Rim Seal Cavity in the Presence of Purge Mass Flow
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
Paper No. GT2016-56500
.
47.
Schädler
,
R.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2017
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.
48.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
49.
Wang
,
X.
,
Liao
,
G.
,
Zhang
,
F.
, and
Li
,
J.
,
2016
, “
Numerical Investigation on the Steady and Unsteady Flow Characteristics of Rim Seal for the First Stage in Gas Turbine
,”
Appl. Therm. Eng.
,
99
, pp.
11
22
.
50.
O’Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2011
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
Proc. Inst. Mech. Eng. J. Mech. Eng. Sci.
,
225
(
12
), pp.
2881
2891
.
51.
Gao
,
F.
,
Poujol
,
N.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2018
, “
Advanced Numerical Simulation of Turbine Rim Seal Flows and Consideration for RANS Turbulence Modelling
,”
ASME Turbo Expo 2018
,
Oslo, Norway
,
Paper No. GT2018-75116
.
52.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.
53.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2019
, “
Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow, Turbul. Combust.
,
102
(
1
), pp.
189
220
.
54.
Zhang
,
Z.
,
Zhang
,
Y.
,
Dong
,
X.
,
Qu
,
X.
,
Lu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Flow Mechanism Between Purge Flow and Mainstream in Different Turbine Rim Seal Configurations
,”
Chinese J. Aeronaut.
,
33
(
8
), pp.
2162
2175
.
55.
Boutet-blais
,
G.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Julien
,
S.
,
Harvey
,
J.-F.
,
Marini
,
R.
, and
Caron
,
J.-F.
,
2011
, “
Passive Tracer Validity for Cooling Effectiveness Through Flow Computation in a Turbine Rim Seal Environment
,”
ASME Turbo Expo 2011
,
Vancouver, BC, Canada
,
Paper No. GT2011-45654
.
56.
Aretakis
,
N.
, and
Mathioudakis
,
K.
,
1997
, “
Wavelet Analysis for Gas Turbine Fault Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
870
876
.
57.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(
1
), pp.
267
288
.
58.
Palermo
,
D. M.
,
Gao
,
F.
,
Amirante
,
D.
,
Chew
,
J. W.
,
Bru Revert
,
A.
, and
Beard
,
P. F.
,
2021
, “
Wall-Modelled Large Eddy Simulations of Axial Turbine Rim Sealing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061025
.
59.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.
60.
Valencia
,
A. G.
,
Dixon
,
J. A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Smith
,
P. E. J.
,
Muñoz
,
J.
,
Eastwood
,
D.
,
Long
,
C. A.
,
Coren
,
D. D.
, and
Atkins
,
N. R.
,
2012
, “
An Investigation Into Numerical Analysis Alternatives for Predicting Re-Ingestion in Turbine Disc Rim Cavities
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
Paper No. GT2012-68592
.
You do not currently have access to this content.