Abstract

Detailed heat transfer measurements using transient liquid crystal thermography were performed on a novel cooling design covering the mid-chord and trailing edge region of a typical gas turbine blade under stationary and rotating conditions. The test section comprised two channels with aspect ratio (AR) of 2:1 (mid-chord) and 4:1 (trailing edge), where the coolant was fed into the AR = 2:1 channel from the root. Rib turbulators with a pitch-to-rib height ratio (p/e) of 10 and rib height-to-channel hydraulic diameter ratio (e/Dh) of 0.075 were placed in the AR = 2:1 channel at an angle of 60 deg relative to the direction of flow. The coolant after entering this section was routed to the AR = 4:1 section through a set of crossover jets. The purpose of the crossover jets was to induce sideways impingement onto the pin fins that were placed in the 4:1 section to enhance heat transfer. The 4:1 section had a realistic trapezoidal shape that mimics the trailing edge of an actual gas turbine blade. The pin fins were arranged in a staggered array with a center-to-center spacing of 2.5 times the pin diameter in both spanwise and streamwise directions. The trailing edge section consisted of both radial and cutback exit holes for flow exit. Experiments were performed for the Reynolds number (Redh(AR=2:1)) of 20,000 at Rotation numbers (Rodh(AR=2:1)) of 0, 0.1, and 0.14. The channel-averaged heat transfer coefficient on trailing side was ∼28% (AR = 2:1) and ∼7.6% (AR = 4:1) higher than the leading side for Rotation number (Ro) of 0.1. It is shown that the combination of crossover jets and pin fins can be an effective method for cooling wedge-shaped trailing edge channels over axial cooling flow designs.

References

1.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
21
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press,
Boca Raton, FL
.
3.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
4.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.
5.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
(
4
), pp.
872
880
.
6.
Tanda
,
G.
,
1997
, “
Natural Convection Heat Transfer in Vertical Channels With and Without Transverse Square Ribs
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2173
2185
.
7.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib–Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.
8.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
.
9.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
.
10.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
11.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.
12.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
251
259
.
13.
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Effect of Rotation on Heat Transfer in Two-Pass Square Channels With Five Different Orientations of 45 Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(
4
), pp.
653
669
.
14.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1: 2 and AR = 1: 4) With 45 deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.
15.
VanFossen
,
G. J.
,
1981
, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
Proceedings of the ASME 1981 International Gas Turbine Conference and Products Show. Volume 3: Heat Transfer; Electric Power
,
Houston, TX
,
Mar. 9–12
, p.
V003T09A003
.
16.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,”
Proceedings of the ASME 1982 International Gas Turbine Conference and Exhibit. Volume 4: Heat Transfer; Electric Power
,
London, UK
,
Apr. 18–22
, p.
V004T09A007
.
17.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
.
18.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Shih
,
T. I.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
8
), p.
081902
.
19.
Hwang
,
J. J.
, and
Lui
,
C. C.
,
1999
, “
Detailed Heat Transfer Characteristic Comparison in Straight and 90-deg Turned Trapezoidal Ducts With Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
,
42
(
21
), pp.
4005
4016
.
20.
Kumaran
,
T. K.
,
Han
,
J. C.
, and
Lau
,
S. C.
,
1991
, “
Augmented Heat Transfer in a Pin Fin Channel With Short or Long Ejection Holes
,”
Int. J. Heat Mass Transfer
,
34
(
10
), pp.
2617
2628
.
21.
Lau
,
S. C.
,
Han
,
J. C.
, and
Kim
,
Y. S.
,
1989
, “
Turbulent Heat Transfer and Friction in Pin Fin Channels With Lateral Flow Ejection
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
1
), pp.
51
58
.
22.
Wright
,
L. M.
,
Lee
,
E.
, and
Han
,
J. C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin-Fins
,”
J. Thermophys. Heat Transfer
,
18
(
2
), pp.
263
272
.
23.
Rallabandi
,
A. P.
,
Liu
,
Y.
, and
Han
,
J.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
.
24.
Huang
,
S. C.
,
Wang
,
C. C.
, and
Liu
,
Y. H.
,
2017
, “
Heat Transfer Measurement in a Rotating Cooling Channel With Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy
,”
Int. J. Heat Mass Transfer
,
115
, pp.
364
376
.
25.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1998
, “
Measurements of Heat Transfer Coefficients in Rib-Roughened Trailing-Edge Cavities With Crossover Jets
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Stockholm, Sweden
,
June 2–5
, p.
V004T09A075
.
26.
Coletti
,
F.
,
Armellini
,
A.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2010
, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing Jets—Part II: Heat Transfer Analysis
,”
ASME J. Turbomach.
,
133
(
3
), p.
031024
.
27.
Coletti
,
F.
,
Scialanga
,
M.
, and
Arts
,
T.
,
2011
, “
Experimental Investigation of Conjugate Heat Transfer in a Rib-Roughened Trailing Edge Channel With Crossing Jets
,”
ASME J. Turbomach.
,
134
(
4
), p.
041016
.
28.
LeBlanc
,
C.
,
Ekkad
,
S. V.
,
Lambert
,
T.
, and
Rajendran
,
V.
,
2012
, “
Detailed Heat Transfer Distributions in Engine Similar Cooling Channels for a Turbine Rotor Blade With Different Rib Orientations
,”
ASME J. Turbomach.
,
135
(
1
), p.
011034
.
29.
Park
,
N.
,
Son
,
C.
,
Yang
,
J.
,
Lee
,
C.
, and
Lee
,
K.
,
2018
, “
Full Surface Heat Transfer Measurement of a Turbine Internal Cooling System Using a Large Scaled Model
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 5A: Heat Transfer
,
Oslo, Norway
,
June 11–15
,
V05AT16A019
.
30.
Shiau
,
C.
,
Chen
,
A. F.
,
Han
,
J.
, and
Krewinkel
,
R.
,
2019
, “
Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031015
.
31.
Dutta
,
S.
, and
Han
,
J.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
3
), pp.
578
584
.
32.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
A New Cooling Design for Rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
, pp.
6
20
.
33.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2019
, “
Multi-Pass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: Smooth Channels
,”
ASME J. Turbomach.
,
141
(
7
), p.
071001
.
34.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2019
, “
Multipass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: 45-deg Angled Rib Turbulated Channels
,”
ASME J. Turbomach.
,
141
(
7
), p.
071003
.
35.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), p.
957
.
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
37.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
590
596
.
38.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
700
706
.
You do not currently have access to this content.