Abstract

Gas turbine particle ingestion may lead to the deposition of contaminants in the compressor section, inducing the performance losses of the whole engine. The economic losses derived from this issue push great interest in the investigation of such a phenomenon from a numerical and experimental standpoint. This article describes a quantitative approach to predict particle deposition on the vanes of an axial compressor starting from the flow field obtained employing computational fluid dynamic (CFD) simulations. The results are then compared to the experiments performed on the Allison 250 C18 compressor unit subject to particle ingestion under controlled conditions. The results derived from the experimental and numerical investigations are presented, providing insight into the mass deposited on the vanes and the corresponding zones most affected by the particle deposition issue. The methodology showed good agreement in the estimation of the predicted values of the deposited mass and the corresponding patterns through the compressor stages. The low-complexity approach proposed here could help the designer to predict the contamination of the stationary rows starting from a simple set of single-phase numerical results. Furthermore, with the implementation of this approach into the design path, the designer could reduce the impact of fouling, looking at the effects of their solutions under the fouling-reduction light.

References

1.
Bammert
,
K.
, and
Woelk
,
G.
,
1980
, “
The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
102
(
2
), pp.
283
287
.
2.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
3.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
4.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors: Causes, Effects, Susceptibility, and Sensitivity
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, American Society of Mechanical Engineers, pp.
571
590
.
5.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
, “Guideline for Gas Turbine Inlet Air Filtration Systems,” Gas Machinery Research Council, Dallas, TX.
6.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power.
,
22
(
2
), pp.
350
360
.
7.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.
8.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2015
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
9.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
10.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(
1
), p.
454
.
11.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2021
, “
Dust Ingestion in a Rotorcraft Engine Compressor: Experimental and Numerical Study of the Fouling Rate
,”
Aerospace
,
8
(
3
), p. 81.
12.
Friedlander
,
S. K.
,
1977
,
Smoke, Dust and Haze: Fundamentals of Aerosol Behavior
,
Wiley-Interscience
,
New York
,
1
333
.
13.
Salamon
,
P.
,
Fernàndez-Garcia
,
D.
, and
Gómez-Hernández
,
J. J.
,
2006
, “
A Review and Numerical Assessment of the Random Walk Particle Tracking Method
,”
J. Contam. Hydrol.
,
87
(
3–4
), pp.
277
305
.
14.
Zheng
,
C.
,
1994
, “
Analysis of Particle Tracking Errors Associated With Spatial Discretization
,”
Groundwater
,
32
(
5
), pp.
821
828
.
15.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
a.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.
16.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behaviour of Adhesive, Elastic-Plastic Spheres
,”
Powder. Technol.
,
99
(
2
), pp.
154
162
.
17.
Bons
,
J.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p. 081009.
18.
Vigueras Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,” Ph.D. thesis,
Cranfield University
,
Bedford, UK
.
19.
Döring
,
F.
,
Staudacher
,
S.
,
Koch
,
C.
, and
Weißschuh
,
M.
,
2017
, “
Modeling Particle Deposition Effects in Aircraft Engine Compressors
,”
ASME J. Turbomach.
,
139
(
5
), p.
051003
.
20.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042605
.
21.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2017
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.
22.
Friedlander
,
S.
, and
Johnstone
,
H.
,
1957
, “
Deposition of Suspended Particles From Turbulent Gas Streams
,”
Indus. Eng. Chem.
,
49
(
7
), pp.
1151
1156
.
23.
Schwendiman
,
L.
, and
Postma
,
A.
,
1962
, “Turbulent Deposition in Sampling Lines,” Rapport technique Tech. Inf. Div. TID-7628, USAEC, 118.
24.
Wells
,
A.
, and
Chamberlain
,
A.
,
1967
, “
Transport of Small Particles to Vertical Surfaces
,”
British J. Appl. Phys.
,
18
(
12
), p.
1793
.
25.
Sehmel
,
G. A.
,
1968
, “
Aerosol Deposition From Turbulent Airstreams in Vertical Conduits
, Technical Report,
Wash. Pacific Northwest Lab
,
Battelle-Northwest, Richland
.
26.
Liu
,
B. Y.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol. Sci.
,
5
(
2
), pp.
145
155
.
27.
Young
,
J.
, and
Leeming
,
A.
,
1997
, “
A Theory of Particle Deposition in Turbulent Pipe Flow
,”
J. Fluid. Mech.
,
340
(
1
), pp.
129
159
.
28.
Soldati
,
A.
, and
Marchioli
,
C.
,
2009
, “
Physics and Modelling of Turbulent Particle Deposition and Entrainment: Review of a Systematic Study
,”
Int. J. Multiphase. Flow.
,
35
(
9
), pp.
827
839
.
29.
Tarabrin
,
A.
,
Schurovsky
,
V.
,
Bodrov
,
A.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.
30.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
,
2002
, “
Bouncing Motion of Spherical Particles in Fluids
,”
Phys. Fluids.
,
14
(
2
), pp.
643
652
.
31.
Yu
,
K.
,
Elghannay
,
H. A.
, and
Tafti
,
D.
,
2017
, “
An Impulse Based Model for Spherical Particle Collisions With Sliding and Rolling
,”
Powder. Technol.
,
319
, pp.
102
116
.
32.
Cleaver
,
J.
, and
Yates
,
B.
,
1973
, “
Mechanism of Detachment of Colloidal Particles From a Flat Substrate in a Turbulent Flow
,”
J. Colloid. Interface. Sci.
,
44
(
3
), pp.
464
474
.
33.
Laufer
,
J.
,
1954
, “The Structure of Turbulence in Fully Developed Pipe Flow,” NACA Report 1174.
34.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid. Mech.
,
22
(
2
), pp.
385
400
.
35.
Tsai
,
C.-J.
,
Pui
,
D. Y.
, and
Liu
,
B. Y.
,
1991
, “
Elastic Flattening and Particle Adhesion
,”
Aerosol. Sci. Technol.
,
15
(
4
), pp.
239
255
.
36.
Kern
,
D. Q.
, and
Seaton
,
R. A.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
British Chem. Eng.
,
4
(
5
), pp.
258
262
.
37.
Taborek
,
J.
,
1972
, “
Fouling: The Major Unsolved Problem in Heat Transfer
,”
Chem. Eng. Prog.
,
68
(
2
),, pp.
59
67
.
38.
Suman
,
A.
,
Vulpio
,
A.
,
Fortini
,
A.
,
Fabbri
,
E.
,
Casari
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2021
, “
Experimental Analysis of Micro-Sized Particles Time-Wise Adhesion: the Influence of Impact Velocity and Surface Roughness
,”
Int. J. Heat Mass. Transfer.
,
165
, p.
120632
.
39.
“Allison Gas Turbine. Operation and Maintenance manual. Turboshaft models 250-C18, A, B & C,” Detroit Diesel Allison, Division of General Motors Corporation, Indianapolis, IN.
40.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2020
, “
Experimental Assessment of Fouling Effects in a Multistage Axial Compressor
,”
E3S Web of Conferences
,
Virtual, Online
,
Sept. 15–16
, Vol.
197
,
EDP Sciences
, p.
11007
.
41.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation Due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.
42.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Vulpio
,
A.
,
Appleby
,
C.
, and
Kyte
,
S.
,
2020
, “
Assessment of the Washing Effectiveness of On-Purpose Designed Eco-friendly Cleaner Against Soot Deposits
,”
J. Global Power Propul. Soc.
,
4
, pp.
253
263
.
43.
Endo
,
Y.
,
Hasebe
,
S.
, and
Kousaka
,
Y.
,
1997
, “
Dispersion of Aggregates of Fine Powder by Acceleration in an Air Stream and Its Application to the Evaluation of Adhesion Between Particles
,”
Powder. Technol.
,
91
(
1
), pp.
25
30
.
44.
Calvert
,
G.
,
Ghadiri
,
M.
, and
Tweedie
,
R.
,
2009
, “
Aerodynamic Dispersion of Cohesive Powders: A Review of Understanding and Technology
,”
Adv. Powder Technol.
,
20
(
1
), pp.
4
16
.
45.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
46.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
American Society of Mechanical Engineers
, p.
V05BT16A013
.
47.
ISO
,
B.
,
1997
, “Road Vehicles-Test Dust for Filter Evaluation—Part 1: Arizona Test Dust,” BSI-British Standards Institution, pp.
1
6
.
48.
Clarkson
,
R. J.
,
Majewicz
,
E. J.
, and
Mack
,
P.
,
2016
, “
A Re-evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
,
230
(
12
), pp.
2274
2291
.
49.
Perullo
,
C. A.
,
Barron
,
J.
,
Grace
,
D.
,
Angello
,
L.
, and
Lieuwen
,
T.
,
2015
, “
Evaluation of Air Filtration Options for an Industrial Gas Turbine
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration
,
Montreal, Quebec, Canada
,
June 15–19
,
American Society of Mechanical Engineers Digital Collection
, p. V003T08A011.
50.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Time-Wise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p. 081005.
51.
Ashbrook
,
R. L.
,
1969
,
A Survey of Salt Deposits in Compressors of Flight Gas Turbine Engines
, Vol.
4999
,
National Aeronautics and Space Administration
, NASA Lewis Research Center, Cleveland, OH.
52.
Tarabrin
,
A.
,
Schurovsky
,
V.
,
Bodrov
,
A.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Perfomance Based on Different Schemes and With Different Initial Parameters
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
,
American Society of Mechanical Engineers
, p.
V004T11A006
53.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
54.
Stalder
,
J.-P.
,
1998
, “
Gas Turbine Compressor Washing State of the Art–field Experiences
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
,
American Society of Mechanical Engineers
, p.
V004T11A010
.
55.
Mezheritsky
,
A.
, and
Sudarev
,
A. V.
,
1990
, “
The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors
,”
ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
,
Brussels, Belgium
,
June 11–14
,
American Society of Mechanical Engineers
, p.
V004T11A003
.
56.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p. 081006.
57.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
Nih Image to Imagej: 25 Years of Image Analysis
,”
Nat. Methods.
,
9
(
7
), p.
671
.
58.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
59.
ANSYS
,
C.
,
2010
,
Release 13.0-User Manual
,
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.