Abstract

Combustor exit conditions in modern gas turbines are generally characterized by significant temperature distortions and swirl degree, which in turn is responsible for very high turbulence intensities. These distortions have become particularly important with the introduction of lean combustion, as a mean to control NOx pollutant emissions. For this reason, combustor–turbine interaction studies have recently gained a lot of importance. Past studies have focused on the description of the effects of turbulence, swirl degree, and temperature distortions on the behavior of the high-pressure stages of the turbine, both considering them as separated aspects and accounting for their combined impact. Aspects like pressure losses, hot streaks migration, and film-cooling behavior have been widely investigated. Even if some studies have focused on the characterization of the heat transfer coefficient (HTC) on the nozzle guide vane external surface, none of them have addressed this aspect from a purely experimental point of view. Indeed, when inlet conditions are characterized by both swirl and temperature distortions, they represent a severe challenge for the commonly adopted measurement techniques. The work presented in this paper was carried out on a non-reactive, annular, three-sector test rig made by a non-reactive combustor simulator and a nozzle guide vane cascade; it is able to create a representative combustor outflow, characterized by all the flow characteristics described before. A novel experimental approach, which was developed in a previous work, was exploited to experimentally retrieve the heat transfer coefficient and the adiabatic wall temperature distributions on a non-cooled nozzle guide vane. Temperature measurements on the cascade inlet and outlet planes were also used to provide boundary conditions and achieve a better understanding of the investigated phenomena. The results allowed to evidence the effect of the inlet swirl on the heat transfer coefficient distribution, as well as the evolution of the temperature distribution on the vane surface moving through the cascade, constituting the first attempt to evaluate these aspects from a purely experimental point of view.

References

1.
Giller
,
L.
, and
Schiffer
,
H. P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Copenhagen, Denmark
,
June 11–15
, pp.
1401
1415
.
2.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2014
, “
The Impact of Realistic Inlet Swirl in a 1 1/2 Stage Axial Turbine
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Düsseldorf, Germany
,
June 16–20
, p. V02CT38A045.
3.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H. P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
4.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), pp.
1
18
.
5.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.
6.
Jenkins
,
S.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
,
2004
, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
,
126
(
1
), pp.
203
211
.
7.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2005
, “
The Effects of the Vane and Mainstream Turbulence Level on Hot Streak Attenuation
,”
ASME J. Turbomach.
,
127
(
1
), pp.
215
221
.
8.
Barigozzi
,
G.
,
Mosconi
,
S.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2017
, “
The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
15
.
9.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial HP Turbine Stage
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
6
.
10.
Wilhelm
,
M.
,
Schmidt
,
M.
,
Goertz
,
F.
, and
Schiffer
,
H. P.
,
2017
, “
Influence of Combustor Swirl on Turbulence at the Large Scale Turbine Rig (LSTR)
,”
Proceedings of the 23rd International Symposium on Air Breathing Engines
,
Manchester, UK
,
Sept. 3–8
, pp.
1
20
.
11.
Bacci
,
T.
,
Picchi
,
A.
,
Lenzi
,
T.
, and
Facchini
,
B.
,
2019
, “
Turbulence Intensity Measurements Across a NGV Cooled Cascade With Representative Lean Burn Combustor Outflow
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
, pp.
1
16
.
12.
Bacci
,
T.
,
Lenzi
,
T.
,
Picchi
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2019
, “
Flow Field and Hot Streak Migration Through a High Pressure Cooled Vanes With Representative Lean Burn Combustor Outflow
,”
ASME J. Eng. Gas Turbine Power
,
141
(
4
), p.
0410202
.
13.
Krumme
,
A.
,
Tegeler
,
M.
, and
Gattermann
,
S.
,
2019
, “
Design, Integration and Operation of a Rotating Combustor-Turbine-Interaction Test Rig Within the Scope of EC FP7 Project Factor
,”
Proceedings of 13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC13
,
Lausanne, Switzerland
,
Apr. 8–12
, pp.
1
12
.
14.
Krumme
,
A.
,
Buske
,
C.
,
Bachner
,
J. R.
,
Dahnert
,
J.
,
Tegeler
,
M.
,
Ferraro
,
F.
,
Govert
,
S.
,
Kocian
,
K.
,
di Mare
,
F.
, and
Pahs
,
A.
,
2019
, “
Investigation of Combustor-Turbine-Interaction in a Rotating Cooled Transonic High-Pressure Turbine Test Rig: Part 1—Experimental Results
,”
ASME Conference Proceedings
,
Phoenix, AZ
,
June 17–21
, pp.
1
14
.
15.
Beard
,
P. F.
,
Adams
,
M. G.
,
Nagawakar
,
J. R.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Cardwell
,
D. N.
,
Povey
,
T.
, and
Chana
,
S.
,
2019
, “
The Lemcotec 1-1/2 Stage Film-Cooled HP Turbine: Design, Integration and Testing in the Oxford Turbine Research Facility
,”
2019 European Turbomachinery Conference Proceedings
,
Lausanne, Switzerland
,
Apr. 8–12
, pp.
1
13
.
16.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effect of a Combined Hot-Streak and Swirl Profile on Cooled 1.5—Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
17.
Hall
,
B. F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2013
, “
Design of a Non Reacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation
,”
Proceedings of ASME Turbo Expo
,
San Antonio, TX
,
June 3–7
, pp.
1
12
.
18.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
19.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
20.
Aslanidou
,
I.
, and
Rosic
,
B.
,
2017
, “
Aerothermal Performance of Shielded Vane Design
,”
ASME J. Turbomach.
,
139
(
11
), p.
041006
.
21.
Shaikh
,
F.
, and
Rosic
,
B.
,
2021
, “
Unsteady Phenomena at the Combustor-Turbine Interface
,”
J. Global Power Propul. Soc.
,
5
, pp.
202
215
.
22.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2010
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031901
.
23.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,”
ASME Conference Proceedings
,
Vienna, Austria
,
June 14–17, 2004
, pp.
31
38
.
24.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
25.
Mansouri
,
Z.
, and
Belamadi
,
R.
,
2020
, “
The Influence of Inlet Swirl Intensity and Hot-Streak on Aerodynamics and Thermal Characteristics of a High Pressure Turbine Vane
,”
Chin. J. Aeronaut.
,
34
(
11
), pp.
66
78
.
26.
Mansouri
,
Z.
,
2021
, “
Numerical Prediction of Heat Transfer Characteristics on a Turbine Nozzle Guide Vane Under Various Combustor Exit Hot-Streaks
,”
Heat Transfer
,
51
(
1
), pp.
976
997
.
27.
Xiao
,
C.
, and
Wei-lin
,
Y.
,
2021
, “
Study on the Influence of Hot Streak and Swirl on the Film Cooling Performance of the Leading Edge of the Guide Vane
,”
Proceedings of the Fourth Chinese International Turbomachinery Conference (CITC 2020)
,
Guangzhou, China
,
Nov. 2
, Vol. 1081, p.
012011
.
28.
Zhang
,
W.
,
Wang
,
Z.
,
Wang
,
Z.
,
Li
,
R.
, and
Feng
,
Z.
,
2022
, “
Study on Heat Transfer Characteristics of NGVs Influenced by Non-Reacting Lean Burn Combustor Simulator Flow
,”
Int. J. Therm. Sci.
,
172
(
A
), p.
107313
.
29.
Bacci
,
T.
,
Picchi
,
A.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2022
, “
A New Experimental Approach for Heat Transfer Coefficient and Adiabatic Wall Temperature Measurements on a Nozzle Guide Vane With Inlet Temperature Distortions
,”
ASME J. Turbomach.
,
144
(
3
), p.
031007
.
30.
Cubeda
,
S.
,
Bacci
,
T.
,
Mazzei
,
L.
,
Salvadori
,
S.
,
Facchini
,
B.
,
Fiorineschi
,
L.
, and
Volpe
,
Y.
,
2020
, “
Design of a Non-Reactive Warm Rig With Lean-Premix Combustor Swirlers and Film-Cooled First Stage Nozzles
,”
ASME Conference Proceedings
,
Virtual, Online
,
Sept. 21–25
, pp.
1
13
.
31.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J. L.
,
2015
, “
Flowfield and Temperature Profiles of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
Proceedings of ASME Turbo Expo
,
Montreal, Quebec, Canada
,
June 15–19
, pp.
1
14
.
32.
Bacci
,
T.
,
Picchi
,
A.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Innocenti
,
L.
,
2021
, “
Effect of Surface Roughness and Inlet Turbulence Intensity on a Turbine Nozzle Guide Vane External Heat Transfer: Experimental Investigation on a Literature Test Case
,”
ASME J. Turbomach
,
143
(
4
), p.
041006
.
You do not currently have access to this content.