Abstract

High-speed low-pressure turbines (HS-LPTs) are one key turbomachinery component in ultra-high bypass ratio geared turbofan engines. The HS-LPT typically operates at transonic exit Mach numbers and low-Reynolds numbers. These flow regimes are prone to boundary layer instabilities such as separations on the suction side, leading to a significant increase in losses. It is therefore essential to understand the operation of LPTs and, more specifically, the behavior of the boundary layer on the blades in such environments. We present a numerical investigation of a high-speed low-Reynolds turbine cascade simulated at nominal and off-design Mach numbers. The study case is the SPLEEN C1 cascade tested in the transonic linear cascade rig S-1/C of the von Karman Institute. The cascade is numerically operated at the nominal test exit Reynolds number Re2,is=70k, over a range of subsonic and transonic exit Mach numbers: M2,is=0.70,0.80,0.90, and 0.95. All simulations are performed with the explicit compressible solver of the massively parallel code YALES2, using a wall-resolved large eddy simulations (WRLES) approach, and featuring a fourth-order finite volume spatial discretization. This scale-resolving approach allows to capture the turbine flow physics with high accuracy at an acceptable computational cost. The test case offers the possibility to assess the Mach and compressibility effects on the profile aerodynamics of HS-LPT: separation, transition mechanisms, unsteadiness, and passage choking, as well as trailing edge unsteady flows. The flow predictions show a substantial agreement with the available high-fidelity experimental data. Furthermore, the calculations suggest that the wake thins and loss increase with the Mach number. The experiments support this evidence, although discrepancies are observed in peak losses for Mach numbers above 0.70. The root cause is likely found in the laminar inflow used in the large eddy simulations (LES) compared to the freestream turbulence intensity level of 2.5% of the experimental test case. Compressibility effects are observed. In particular, a weak compression wave stands in the region of the cascade throat for the case M2,is=0.90, whereas a shock appears for M2,is=0.95 with the cascade choked. The role of the shock on the separation and transition on the blade suction side is discussed.

References

1.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 48821
,
Orlando, FL
,
June 8–12
, pp.
145
153
.
2.
Alexiou
,
A.
,
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Kolias
,
I.
, and
Mathioudakis
,
K.
,
2017
, “
Performance Modelling of an Ultra-high Bypass Ratio Geared Turbofan
,”
Proceedings of the 23rd ISABE Conference
,
Manchester, UK
,
Sept. 3–8
, ISABE-2009-22512.
3.
Hodson
,
H.
, and
Howell
,
R.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
4.
Lopes
,
G.
,
Simonassi
,
L.
,
Gendebien
,
S.
,
Torre
,
A.
,
Patinios
,
M.
,
Zeller
,
N.
,
Pintat
,
L.
, and
Lavagnoli
,
S.
,,
2025
, “
An Open Test Case for High-Speed Low-Pressure Turbines: The SPLEEN C1 Cascade
,”
Int. J. Turbomach. Propuls. Power
,
10
(
1
), p. 2.
5.
Lopes
,
G.
,
Simonassi
,
L.
,
Torre
,
A.
,
Patinios
,
M.
, and
Lavagnoli
,
S.
,
2022
, “
An Experimental Test Case for Transonic Low-Pressure Turbines—Part 2: Cascade Aerodynamics at On- and Off-Design Reynolds and Mach Numbers
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 86106
,
Rotterdam, Netherlands
,
June 13–17
,
American Society of Mechanical Engineers
, p.
V10BT30A027
.
6.
Babajee
,
J.
,
2013
, “
Detailed Numerical Characterization of the Separation-Induced Transition, Including Bursting, in a Low-Pressure Turbine Environment
,” PhD thesis,
Ecole Centrale de Lyon, Institut von Karman de dynamique des fluides
,
Rhode-Saint-Genése
.
7.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
8.
Prakash
,
C.
,
Cherry
,
D.
,
Shin
,
H.
,
Machnaim
,
J.
,
Dailey
,
L.
,
Beacock
,
R.
,
Halstead
,
D.
,
Wadia
,
A.
,
Guillot
,
S.
, and
Ng
,
W.
,
2008
, “
Effect of Loading Level and Distribution on LPT Losses
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 43161
,
Berlin, Germany
,
June 9–13
, pp.
917
925
.
9.
Curtis
,
E.
,
Hodson
,
H.
,
Banieghbal
,
M.
,
Denton
,
J.
,
Howell
,
R.
, and
Harvey
,
N.
,
1997
, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
10.
Mayle
,
R.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
11.
Howell
,
R.
,
Ramesh
,
O.
,
Hodson
,
H.
,
Harvey
,
N.
, and
Schulte
,
V.
,
2000
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
(
2
), pp.
181
188
.
12.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2010
,
“A CFD Study of Low Reynolds Number Flow in High Lift Cascades
,”
Turbo Expo: Power for Land, Sea, and Air Vol. 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
1525
1534
.
13.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
.
14.
Bernardini
,
C.
,
Benton
,
S. I.
,
Bons
,
J. P.
,
Chen
,
J.
, and
Martelli
,
F.
,
2014
, “
Steady Vortex-Generator Jet Flow Control on a Highly Loaded Transonic Low-Pressure Turbine Cascade: Effects of Compressibility and Roughness
,”
ASME J. Turbomach.
,
136
(
11
), p.
111003
.
15.
Bernardini
,
C.
,
Salvadori
,
S.
,
Barocchi
,
M.
, and
Martelli
,
F.
,
2015
, “
Influence of Slot Blowing Operating Parameters on Shock-Induced Separation in a Low-Pressure Turbine Cascade
,”
Proceedings of the 12th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows, Vol. ISAIF12
,
Lerici, Italy
,
July 13–16
, p.
11
.
16.
Marty
,
J.
,
2014
, “
Numerical Investigations of Separation-Induced Transition on High-Lift Low-Pressure Turbine Using RANS and LES Methods
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
228
(
8
), pp.
924
952
.
17.
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Hutchins
,
N.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2019
, “
Development and Use of Machine-Learnt Algebraic Reynolds Stress Models for Enhanced Prediction of Wake Mixing in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
141
(
4
), p.
041010
.
18.
Ashpis
,
D.
, and
John
,
E.
,
1998
, “
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
,” 1997 Workshop on Boundary Layer Transition in Turbomachines No. E-11100 NASA/CP-1998-206958, Syracuse, NY, Sept. 7–10, 1997, pp.
1
531
.
19.
Moustapha
,
S.
,
Kacker
,
S.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
20.
Wei
,
N.
,
2000
, “
Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines
,” PhD thesis,
Royal Institute of Technology
,
Suéde
.
21.
Shyne
,
R. J.
,
Sohn
,
K.
, and
De Witt
,
K.
,
2000
, “
Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
84
89
.
22.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow, Turbulence Combust.
,
102
(
4
), pp.
797
848
.
23.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
100554
.
24.
Nurnberger
,
D.
, and
Greza
,
H.
,
2002
, “
Numerical Investigation of Unsteady Transitional Flows in Turbomachinery Components Based on a RANS Approach.
,”
Flow Turbulence Combust.
,
69
(
3
), pp.
331
353
.
25.
Ranjan
,
R.
,
Deshpande
,
S.
, and
Narasimha
,
R.
,
2017
, “
New Insights From High-Resolution Compressible DNS Studies on an LPT Blade Boundary Layer
,”
Comput. Fluids
,
153
, pp.
49
60
.
26.
Wang
,
T.
,
Zhao
,
Y.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2023
, “
Direct Numerical Simulation of a High-Pressure Turbine Stage: Unsteady Boundary Layer Transition and the Resulting Flow Structures
,”
ASME J. Turbomach.
,
145
(
12
), p.
121009
.
27.
Rosenzweig
,
M.
,
Giaccherini
,
S.
,
Pinelli
,
L.
,
Kozul
,
M.
,
Sandberg
,
R.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2023
, “
Best-Practice Guidelines for High-Fidelity Simulations Based on Detailed Analysis of a Highly-Loaded Low-Pressure Turbine Cascade
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 87097
,
Boston, MA
,
June 26–30
,
American Society of Mechanical Engineers
, p.
V13BT30A021
.
28.
Nardini
,
M.
,
Kozul
,
M.
,
Jelly
,
T. O.
, and
Sandberg
,
R. D.
,
2024
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-scale Surface Roughness—Part I: Methodology and Challenges
,”
ASME J. Turbomach.
,
146
(
3
), p.
031008
.
29.
Nardini
,
M.
,
Jelly
,
T. O.
,
Kozul
,
M.
,
Sandberg
,
R. D.
,
Vitt
,
P.
, and
Sluyter
,
G.
,
2024
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-scale Surface Roughness—Part II: The Effect of Roughness on the Performance of a High-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031009
.
30.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.
31.
Sanders
,
D. D.
,
O’Brien
,
W. F.
,
Sondergaard
,
R.
,
Polanka
,
M. D.
, and
Rabe
,
D. C.
,
2010
, “
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology
,”
ASME J. Turbomach.
,
133
(
3
), p.
031011
.
32.
Sanders
,
D. D.
,
O’Brien
,
W. F.
,
Sondergaard
,
R.
,
Polanka
,
M. D.
, and
Rabe
,
D. C.
,
2010
, “
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part II: The Application to a Highly Separated Turbine Blade Cascade Geometry
,”
ASME J. Turbomach.
,
133
(
3
), p.
031012
.
33.
Chishty
,
M. A.
,
Parvez
,
K.
,
Ahmed
,
S.
,
Hamdani
,
H. R.
, and
Mushtaq
,
A.
,
2011
, “
Transition Prediction in Low Pressure Turbine (LPT) Using Gamma Theta Model and Passive Control of Separation
,”
ASME International Mechanical Engineering Congress and Exposition Vol. 1: Advances in Aerospace Technology; Energy Water Nexus; Globalization of Engineering; Posters
,
Denver, CO
,
Nov. 11–17
, pp.
193
200
.
34.
Keadle
,
K.
, and
McQuilling
,
M.
,
2013
, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number
,”
Turbo Expo: Power for Land, Sea, and Air Vol. 6B: Turbomachinery
,
San Antonio, TX
,
June 3–7
, p.
V06BT37A029
.
35.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: A Path From 2015 to 2035
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
372
(
2022
), p.
20130323
.
36.
Brunet
,
V.
,
Croner
,
E.
,
Minot
,
A.
,
de Laborderie
,
J.
,
Lippinois
,
E.
,
Richard
,
S.
, and
Boussuge
,
J.
, et al.,
2018
, “
Comparison of Various CFD Codes for LES Simulations of Turbomachinery: From Inviscid Vortex Convection to Multi-stage Compressor
,” T
urbo Expo: Power for Land, Sea, and Air Vol. Volume 2C: Turbomachinery
,
Oslo, Norway
,
June 11–15
, American Society of Mechanical Engineers, p.
V02CT42A013
.
37.
Tene Hedje
,
P.
,
Bechane
,
Y.
,
Lavagnoli
,
S.
, and
Bricteux
,
L.
,
2023
, “
Wall Resolved Large-Eddy Simulations of High-Speed Low-Pressure Turbine Cascades
,”
Vol. 13B: Turbomachinery—Axial Flow Turbine Aerodynamics of Turbo Expo: Power for Land, Sea and Air
,
Boston, MA
,
June 26–30
, p.
V13BT30A005
.
38.
Leggett
,
J.
,
Priebe
,
S.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Shabbir
,
A.
,
2016
, “
Detailed Investigation of RANS and LES Predictions of Loss Generation in an Axial Compressor Cascade at Off Design Incidences
,”
Volume 2A: Turbomachinery of Turbo Expo: Power for Land, Sea and Air
,
Seoul, South Korea
,
June 13–17
, p.
V02AT37A050
.
39.
Wang
,
G.
,
Duchaine
,
F.
,
Papadogiannis
,
D.
,
Duran
,
I.
,
Moreau
,
S.
, and
Gicquel
,
L.
,
2014
, “
An Overset Grid Method for Large Eddy Simulation of Turbomachinery Stages
,”
J. Comput. Phys.
,
274
, pp.
333
355
.
40.
Tateishi
,
A.
,
Tani
,
N.
,
Okamura
,
Y.
, and
Hamabe
,
M.
,
2022
, “
LES Prediction of Transitional Flows in LP Turbine Cascades: Effects of Blade Loading, Flow Phenomena and Numerical Setup
,”
J. Global Power Propul. Soc.
,
6
, pp.
330
342
.
41.
Ni
,
M.
,
Ni
,
R.
, and
Clark
,
J. P.
,
2023
, “
LES Modeling of High-Lift High-Work LP Turbine Profiles: Part I: Approach
,”
Vol. 13B: Turbomachinery—Axial Flow Turbine Aerodynamics of Turbo Expo: Power for Land, Sea and Air
,
Boston, MA
,
June 26–30
, p.
V13BT30A019
.
42.
Zhang
,
W.
, and
Zou
,
Z.
,
2023
, “
Large Eddy Simulations of Periodic Wake Effects on Boundary-Layer Transition of Low-Pressure Turbine Cascades
,”
AIP Adv.
,
13
(
2
), p.
025128
.
43.
Torre
,
A. F. M.
,
Patinios
,
M.
,
Lopes
,
G.
,
Simonassi
,
L.
, and
Lavagnoli
,
S.
,
2023
, “
Vane–Probe Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
145
(
6
), p.
061010
.
44.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
Compt. Rendus Mécanique
,
339
(
2–3
), pp.
141
148
.
45.
Moureau
,
V.
,
Lartigue
,
G.
, and
Taieb
,
D.
,
2022
, “Yales2 Home Page,” https://www.coria-cfd.fr/index.php/Main_Page
46.
Lavagnoli
,
S.
,
Lopes
,
G.
,
Simonassi
,
L.
, and
Torre
,
A.
,
2024
, “SPLEEN—High Speed Turbine Cascade—Test Case Database,” v5,
Zenodo
.
47.
Moureau
,
V.
,
Bérat
,
C.
, and
Pitsch
,
H.
,
2007
, “
An Efficient Semi-implicit Compressible Solver for Large-Eddy Simulations
,”
J. Comput. Phys.
,
226
(
2
), pp.
1256
1270
.
48.
Kraushaar
,
M.
,
2011
, “Application of the Compressible and Low-Mach Number Approaches to Large-Eddy Simulation of Turbulent Flows in Aero-Engines,” Theses, Institut National Polytechnique de Toulouse—INPT, Dec, Toulouse, France.
49.
Toro
,
E. F.
,
2009
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
,
Springer
, Berlin, Heidelberg.
50.
Henry de Frahan
,
M. T.
, and
Johnsen
,
S. V. E.
,
2015
, “
A New Limiting Procedure for Discontinuous Galerkin Methods Applied to Compressible Multiphase Flows With Shocks and Interfaces
,”
J. Comput. Phys.
,
280
, pp.
489
509
.
51.
Odier
,
N.
,
Sanjosé
,
M.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Moreau
,
S.
, and
Duchaine
,
F.
,
2019
, “
A Characteristic Inlet Boundary Condition for Compressible, Turbulent, Multispecies Turbomachinery Flows
,”
Comput. Fluids
,
178
, pp.
41
55
.
52.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
53.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
54.
Geuzaine
,
C.
, and
Remacle
,
J.
,
2009
, “
Gmsh: A 3-d Finite Element Mesh Generator With Built-In Pre-and Post-processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.
55.
Borbouse
,
M.
,
2023
, “
Boundary Layer Stability and Shock Interactions in a High-Speed Low Pressure Turbine Cascade
,” Master thesis, Université de liège, The von Karman Institute for Fluid Dynamics, Belgique.
56.
Boudin
,
A.
,
Dombard
,
J.
,
Duchaine
,
F.
,
Gicquel
,
L.
,
Odier
,
N.
,
Lavagnoli
,
S.
, and
Simonassi
,
L.
,
2023
, “
Analysis of Rotor/Stator Interactions in a High-Speed Low-Pressure Turbine Cascade Using Large-Eddy Simulations
,”
15th European Conference on Turbomachinery Fluid dynamics and Thermodynamics
,
Budapest, Hungary
,
Apr. 24–28
.
57.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
, Berlin, Heidelberg.
58.
Fiore
,
M.
, and
Gourdain
,
N.
,
2021
, “
Reynolds, Mach, and Freestream Turbulence Effects on the Flow in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
143
(
10
), p.
101009
.
59.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoustics
,
15
(
2
), pp.
70
73
.
60.
Duan
,
W.
,
Qiao
,
W.
,
Chen
,
W.
, and
Zhao
,
X.
,
2023
, “
Effects of Freestream Turbulence, Reynolds Number and Mach Number on the Boundary Layer in a Low Pressure Turbine
,”
J. Therm. Sci.
,
32
(
4
), pp.
1393
1406
.
You do not currently have access to this content.