Abstract

Material loss at the leading edge of in-service gas-turbine engine blades is detrimental to the aerodynamic performances of compressors. In this study, computational simulations and experiments using pneumatic probes were conducted to measure the total pressure loss of compressor cascade blades with material loss at their leading edges. The correlations between blade leading-edge damage geometries and cascade blade total pressure losses were analyzed. The geometrical features of blade leading-edge damage that most affect the cascade blade total pressure loss were distinguished, and the influences of leading-edge damage region cross-sectional shapes on the cascade blade total pressure loss were examined. Two methods for evaluating the total pressure loss of damaged cascade blades were developed using experimental and numerical data. In the first method, an attempt is made to correlate the cascade blade total pressure loss with a characteristic parameter that is defined using scale and angle parameters of the leading-edge damage region. The second method is based on the probability distribution function as well as the critical loss boundary of the geometrical parameters of the leading-edge damage region. The results of this study provide a better understanding of the influence of damaged leading edges on compressor cascade blade aerodynamic performance and can help establish low-cost methods for the estimation of compressor performance degradation.

References

1.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,” AIAA Paper No. AlAA-84-1208.
2.
Tabakoff
,
W.
,
1988
, “
Causes for Turbomachinery Performance Deterioration
,” ASME Paper No. 88-GT-294.
3.
Tabakoff
,
W.
,
1984
, “
Review—Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
125
134
.
4.
Tabakoff
,
W.
,
Lakshminarasimha
,
A. N.
, and
Pasin
,
M.
,
1990
, “
Simulation of Compressor Performance Deterioration Due to Erosion
,”
ASME J. Turbomach.
,
112
(
1
), pp.
78
83
.
5.
Kurz
,
R.
, and
Brun
,
K.
,
2000
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
6.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062401
.
7.
Astrua
,
P.
,
Cecchi
,
S.
,
Piola
,
S.
,
Silingardi
,
A.
, and
Bonzani
,
F.
,
2013
., “
Axial Compressor Degradation Effects on Heavy Duty Gas Turbines Overall Performances
,” ASME Paper No. GT2013-95497.
8.
Hergt
,
A.
,
Klinner
,
J.
,
Steinert
,
W.
,
Grund
,
S.
,
Beversdorff
,
M.
,
Giebmanns
,
A.
, and
Schnell
,
R.
,
2014
, “
The Effect of an Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade
,”
ASME J. Turbomach.
,
137
(
2
), p.
021006
.
9.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The New Chapter of Transonic Compressor Cascade Design at the DLR
,”
ASME J. Turbomach.
,
145
(
8
), p.
081001
.
10.
Giebmanns
,
A.
,
Schnell
,
R.
,
Steinert
,
W.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Werner-Spatz
,
C.
,
2012
. “
Analyzing and Optimizing Geometrically Degraded Transonic Fan Blades by Means of 2D and 3D Simulations and Cascade Measurements
,” ASME Paper No. GT2012-69064.
11.
Giebmanns
,
A.
,
Schnell
,
R.
, and
Werner-Spatz
,
C.
,
2015
, “
A Method for Efficient Performance Prediction for Fan and Compressor Stages With Degraded Blades
,” ASME Paper No. GT2015-42108.
12.
Gunn
,
E. J.
,
Brandvik
,
T.
,
Wilson
,
M. J.
, and
Maxwell
,
R.
,
2022
, “
Fan Stability With Leading Edge Damage: Blind Prediction and Validation
,”
ASME J. Turbomach.
,
144
(
9
), p.
091015
.
13.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2015
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
.
14.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.
15.
Rocchi
,
S.
,
Roth
,
C.
,
Froebel
,
T.
,
Hackenberg
,
H.-P.
, and
Gümmer
,
V.
,
2023
, “
Multidisciplinary Assessment of Foreign Object Damage (FOD) Sensitive Regions on a Compressor Rotor Blade
,” ASME Paper No. GT2023-102573.
16.
Reitz
,
G.
,
Friedrichs
,
J.
,
Marx
,
J.
, and
Städing
,
J.
,
2014
, “
Performance Analysis of Deteriorated High Pressure Compressor Blades
,” ASME Paper No. GT2014-25544.
17.
Chirayath
,
E.
,
Xu
,
H.
,
Yang
,
X.
, and
Kunz
,
R.
,
2023
, “
Full Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion
,”
ASME J. Turbomach.
,
145
(
9
), p.
091001
.
18.
Taylor
,
J. V.
,
Conduit
,
B.
,
Dickens
,
A.
,
Hall
,
C.
,
Hillel
,
M.
, and
Miller
,
R. J.
,
2020
, “
Predicting the Operability of Damaged Compressors Using Machine Learning
,”
ASME J. Turbomach.
,
142
(
5
), p.
051010
.
19.
Liu
,
B.
,
Qiu
,
Y.
,
An
,
G.
, and
Yu
,
X.
,
2020
, “
Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows
,”
J. Fluid. Eng.
,
142
(
6
), p.
061504
.
20.
Zhang
,
H.
,
Wu
,
Y.
,
Sun
,
E.
,
Li
,
S.
,
Zhang
,
L.
, and
Long
,
Y.
,
2023
, “
Experimental Investigation on the Correlation Between Total Pressure and Swirl Distortions
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111007
.
21.
Al-Mutairi
,
D. K.
,
Ghitany
,
M. E.
, and
Kundu
,
D.
,
2011
, “
A New Bivariate Distribution With Weighted Exponential Marginals and Its Multivariate Generalization
,”
Stat. Pap.
,
52
(
4
), pp.
921
936
.
22.
Skinner
,
C. J.
,
2014
, “
Rejective sampling
,”
Wiley StatsRef: Statistics Reference Online
.
23.
Hormann
,
K.
, and
Agathos
,
A.
,
2001
, “
The Point in Polygon Problem for Arbitrary Polygons
,”
Comput. Geom.
,
20
(
3
), pp.
131
144
.
You do not currently have access to this content.