Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In desert regions, there is a significant presence of dust and sand particles lifted by storms and drawn into aircraft engines, resulting in considerable erosion. This numerical study investigates the dynamics of sand particles affecting the front components of a high-bypass turbofan engine (HBTFE). The components under consideration include a Pitot intake, a spinner, a fan rotor, inlet guide vanes (IGVs), and outlet guide vanes (OGVs). This research focuses on the engine's operating conditions during takeoff from a Saharan airfield. The flow field is solved separately, and the data are transferred to an in-house particle trajectory code based on the Lagrangian model. The finite element method (FEM) is used to track sand particles as they move through the mesh cells, facilitating an accurate assessment of impacts and conditions necessary for calculating erosion rates. The results obtained indicate that a significant number of sand particles frequently impact the rotor blade, from the hub to approximately 80% of its span, due to deflection by the Pitot intake lip and outer contour. The pressure side (PS) of the rotor blade experiences severe erosion, with the highest erosion rates occurring at the leading edge (LE) and toward the trailing edge (TE). At the exit of the rotor, a substantial amount of particles flows through the OGVs and erode the PS, while fewer particles from the lower sections of the fan blade pass via the IGVs to the engine's core. These findings highlight erosion-prone regions that require special protective coatings.

References

1.
Shao
,
Y.
,
Yang
,
Y.
,
Wang
,
J.
,
Song
,
Z.
,
Leslie
,
L. M.
,
Dong
,
C.
,
Zhang
,
Z.
, et al
,
2003
, “
Northeast Asian Dust Storms: Real-Time Numerical Prediction and Validation
,”
J. Geophys. Res.: Atmos.
,
108
(
D22
), pp.
1
18
.
2.
Peterson
,
R. C.
,
1986
, “
Design Features for Performance Retention in the CFM56 Engine
,”
Turbomachinery Performance Deterioration FED—Vol. 37, The AIAA/ASME Fourth Joint Fluid Mechanics Plasma Dynamics, and Lasers Conference
,
Atlanta, GA
,
May 12–14
.
3.
Moroianu
,
D.
, and
Karlsson
,
A.
,
2004
, “
LES of the Flow and Particle Ingestion into an Air Intake of a Jet Engine Running on the Ground
,”
Proc. ASME, Volume 2: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, pp.
209
217
.
4.
Edwards
,
V. R.
, and
Rouse
,
P. L.
,
1994
, “
US Army Rotocraft Turboshaft Engines Sand and Dust Erosion Considerations
,”
Erosion. Corrosion and Foreign Object Damage Effect in Gas Turbine; AGARD-CP-558, AGARD Conference Proceedings 558, Papers Presented at the Propulsion and Energetics Panel (PEP) Symposium
,
Rotterdam, The Netherlands
,
Apr. 25–28
,
Session 1 paper 3, pp. 1–10
.
5.
Tabakoff
,
W.
,
1984
, “
Review Turbomachinery Performance Deterioration Exposed to Solid Particulate Environment
,”
J. Fluid. Eng.
,
106
(
2
), pp.
125
134
.
6.
Schmucker
,
J.
, and
Schaffler
,
A.
,
1994
, “
Performance Deterioration of Axial Compressors Due to Blade Defects
,”
Erosion. Corrosion and Foreign Object Damage Effect in Gas Turbine; AGARD-CP-558 AGARD, Conference Proceedings 558, Papers Presented at the Propulsion and Energetics Panel (PEP) Symposium
,
Rotterdam, The Netherlands
,
Apr. 25–28
,
Session 2 paper 16, pp. 1–6
.
7.
Richardson
,
J. H.
,
Sallee
,
G.P.
, and
Smakula
,
F.K.
,
1979
, “
Causes of High Pressure Compressor Deterioration in Service
,”
AIAA/SAE/ASME, 15th Joint Propulsion Conference
,
Las Vegas, NV
,
June 18–20
. .
8.
Wulf
,
R. H.
,
Kramer
,
W. H.
,
Paas
,
J. E.
, and
Smith
,
J. J.
,
1980
, “
CF6-6D Jet Engine Performance Deterioration
,” R80AEG218, NASA-CR-159786, NASA. https://ntrs.nasa.gov/citations/19800018863
9.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
10.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,”
20th Joint Propulsion Conference
,
Cincinnati, OH
,
June 11–13
.
11.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2004
, “
Experimental Investigation of an Axial Fan Erosion and Performance Degradation
,”
J. Power Energy
,
218
(
6
), pp.
437
450
.
12.
Hussein
,
M. F.
, and
Tabakoff
,
W.
,
1973
, “
Dynamic Behavior of Solid Particles Suspended by Polluted Flow in a Turbine Stage
,”
J. Aircr.
,
10
(
7
), pp.
334
340
.
13.
Tabakoff
,
W.
,
Hosny
,
W.
, and
Hamed
,
A.
,
1976
, “
Effect of Solid Particles on Turbine Performances
,”
ASME J. Eng. Gas Turbines Power
,
98
(
1
), pp.
47
52
.
14.
Tabakoff
,
W.
, and
Hamed
,
A.
,
1977
, “
Aerodynamic Effects on Erosion in Turbomachinery
,”
JSME and ASME Joint Gas Turbine Congress
,
Tokyo, Japan
,
May 22–27
, Paper No. 70. https://www.nypl.org/research/research-catalog/bib/pb99276203506421
15.
Tabakoff
,
W.
, and
Mansour
,
L.
,
1986
, “
Turbine Erosion Exposed to Particulate Flow
,”
Proceedings of ASME
,
Dusseldorf, Germany
,
June 8–12
, Paper No: 86-GT-258, V003T05A003.
16.
Elfeki
,
S.
, and
Tabakoff
,
W.
,
1987
, “
Erosion Study of Radial Flow Compressor With Splitters
,”
ASME J. Turbomach.
,
109
(
1
), pp.
62
69
.
17.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2005
, “
Prediction of Axial Turbomachine Performance Degradation
,”
J. Power Energy
,
219
(
4
), pp.
273
287
.
18.
Ghenaiet
,
A.
,
2010
, “
Simulation of Erosive Effects of Sand Particle Impacts in Axial Turbomachinery
,”
AIP Conf. Proc.
,
1220
(
1
), pp.
78
90
.
19.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(
5
), p.
051025
.
20.
Ghenaiet
,
A.
,
2012
, “
Simulation of Particle Trajectories and Erosion in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051022
.
21.
Ghenaiet
,
A.
,
2012
, “
Effects of Solid Particle Ingestion Through an HP Turbine
,”
Proc. ASME, Volume 8: Turbomachinery, Parts A, B, and C
,
Copenhagen, Denmark
,
June 11–15
.
22.
Ghenaiet
,
A.
,
2010
, “
Prediction of Erosion in Radial Turbine Components
,”
Proc. ASME, Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
.
23.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Particulate Erosion in Two-Stage Compressor
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
98
113
.
24.
Vogel
,
A.
,
Durant
,
A. J.
,
Cassiani
,
M.
,
Clarkson
,
R. J.
,
Slaby
,
M.
,
Diplas
,
S.
,
Kruger
,
K.
, and
Stohl
,
A.
,
2019
, “
Simulation of Volcanic Ash Ingestion Into a Large Aero Engine: Particle-Fan Interactions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011010
.
25.
Saxena
,
S.
,
Jothiprasad
,
G.
,
Bourassa
,
C.
, and
Pritchard
,
B.
,
2017
, “
Numerical Simulation of Particulates in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031013
.
26.
Alqallaf
,
J.
, and
Teixeira
,
J. A.
,
2022
, “
Numerical Study of Effects of Solid Particle Erosion on Compressor and Engine Performance
,”
Results Eng.
,
15
, pp.
1
16
.
27.
Student Notebook
,
1983
,
GEK 50485. Aircraft Engine Business Group, General Electric Company
,
Cincinnati, OH
.
28.
Pecnik
,
R.
,
Witteveen
,
J. A. S.
, and
Iaccarino
,
G.
,
2011
, “
Uncertainty Quantification for Laminar-Turbulent Transition Prediction in RANS Turbomachinery Applications
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
.
29.
Balasubramanian
,
R.
,
Barrows
,
S.
, and
Chen
,
J. P.
,
2008
, “
Investigation of Shear-Stress Transport Turbulence Model for Turbomachinery Applications
,”
46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
.
30.
Fluent user's guide
,
2013
, “
Fluent Inc
,” Release 15.0, Canonsburg, PA.
31.
Sommerfeld
,
M.
,
2000
,
Lecture Series 2000-06. Aril 3–7, 2000, VKI LS 2000-06
,
J. M.
Buchlin
, ed.,
Von Karman Institute for Fluid Dynamics
,
Rhode Saint Genèse, Belgium
, pp.
1
62
.
32.
Chen
,
Q.
, and
Pereira
,
J. C. F.
,
1997
, “
Efficient Computation of Particle Dispersion in Turbulent Flows with a Stochastic Probabilistic Model
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1727
1741
.
33.
Shirolkar
,
J. S.
,
Coimbra
,
C. F. M.
, and
Queiroz
,
M. Q.
,
1996
, “
Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows
,”
Prog. Energy Combust. Sci.
,
22
(
4
), pp.
363
399
.
34.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles
,”
J. Powder Technol.
,
58
(
1
), pp.
63
70
.
35.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.
36.
Mei
,
R.
,
1992
, “
An Approximated Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
147
.
37.
Gosman
,
A. D.
, and
Ionnides
,
E.
,
1981
, “
Aspects of Computer Simulation of Liquid Fuelled Combustors
,”
19th Aerospace Science Meeting
,
St. Louis, MO
,
Jan. 12–15
.
38.
Tabakoff
,
W.
,
Grant
,
G.
, and
Ball
,
R.
,
1974
, “
An Experimental Investigation of Certain Aerodynamic Effects on Erosion
,”
AIAA Paper 74-639, Eighth Aerodynamic Testing Conference
,
Bethesda, MD
,
July 8–10
.
39.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Murugan
,
D. M.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbo-Machinery Application
,”
J. Propul. Power
,
12
(
2
), pp.
260
266
.
40.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
, “
Guideline for Gas Turbine Inlet Air Filtration Systems
,” Gas Machinery Research Council Southwest Research Institute, Release 1.0.
41.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
42.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena: Part II
,”
Wear
,
6
(
part I
), pp.
5
21
, (part II), pp 169–190.
43.
Grant
,
G.
, and
Tabakoff
,
W.
,
1974
, “
Erosion Prediction in Turbomachinery Due to Environmental Solid Particles
,”
AIAA 12th Aerospace Sciences Meeting
,
Washington, DC
,
Jan. 30–Feb. 1
.
44.
Ball
,
R.
, and
Tabakoff
,
W.
,
1973
, “
An Experimental Investigation of the Erosive Characteristics of 410 Stainless Steel And 6AL-4V Titanium
,” Report No 73-40, AD774325. https://apps.dtic.mil/sti/citations/AD0774325
45.
Ghenaiet
,
A.
,
2001
, “
Turbomachinery Performance Degradation Due to Erosion Effect
,”
Ph.D. thesis
,
Cranfield University
,
UK
. http://hdl.handle.net/1826/3542
You do not currently have access to this content.