Abstract

A specialized hydrodynamic simulation code has been developed and verified for the simulation of one-dimensional unsteady problems involving the detonation and deflagration of high explosives. To model all the relevant physical processes in these problems, a code is required to simulate compressible hydrodynamics, unsteady thermal conduction, and chemical reactions with complex rate laws. Several verification exercises are presented which test the implementation of these capabilities. The code also requires models for physics processes such as equations of state and conductivity for pure materials and mixtures as well as rate laws for chemical reactions. Additional verification tests are required to ensure that these models are implemented correctly. Though this code is limited in the types of problems it can simulate, its computationally efficient formulation allows it to be used in calibration studies for reactive burn models for high explosives. This study demonstrates how a series of verification tests can be used to ensure that the various physics processes needed to simulate complex phenomenon can be tested to ensure that they are correctly implemented.

References

1.
Morgan
,
N.
, and
Archer
,
B. J.
,
2021
, “
On the Origins of Lagrangian Hydrodynamic Methods
,”
ANS J. Nucl. Technol.
,
207
(
Suppl. 1
), pp.
S147
S175
.10.1080/00295450.2021.1913034
2.
Burton
,
D. E.
,
1994
, “
Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids
,”
Second International Workshop on Analytical Methods and Process Optimization in Fluid and Gas Mechanics (SAMGOP-94)
, Holiday Base, Arzamas, Russian Federation.
3.
Buren
,
K. L. V.
,
Canfield
,
J. M.
,
Hemez
,
F. M.
, and
Sauer
,
J. A.
,
2012
, “
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR
12
21165
.
4.
Noble
,
C. R.
,
Anderson
,
A. T.
,
Barton
,
N. R.
,
Bramwell
,
J. A.
,
Capps
,
A.
,
Chang
,
M. H.
,
Chou
,
J. J.
,
2017
, “
Ale3d: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. LLNL-TR 732040.
5.
Toro
,
E. F.
,
1993
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
,
Springer
, Berlin.
6.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1989
,
Numerical Recipes: The Art of Scientific Computing (FORTRAN)
,
Cambridge University Press
,
Cambridge, UK
.
7.
Andrews
,
S.
, and
Aslam
,
T.
,
2019
, “
On the Direct Construction of the Steady Traveling Solution to High Explosive Sandwich, Cylinder and Aquarium Test Via a Streamline Finite Volume Approximation
,”
J. Comput. Phys.
,
395
, pp.
653
670
.10.1016/j.jcp.2019.06.029
8.
Leveque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
(Cambridge Texts in Applied Mathematics),
Cambridge University Press
,
Cambridge, UK
.
9.
Horie
,
Y.
, ed.,
2007
,
Shock Wave Science and Technology Reference Library, Vol. 2: Solids I
,
Springer
,
Berlin
.
10.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow With Historical Perspective
,
McGraw-Hill
, New York.
11.
Tait
,
P.
,
1888
,
Physics and Chemistry of the Voyage of HMS Challenger
, Vol.
II
,
Neil and Company
,
Edinburgh, UK
.
12.
Lee
,
E. L.
,
Hornig
,
H. C.
, and
Kury
,
J. W.
,
1968
, “
Adiabatic Expansion of High Explosive Detonation Products
,” Lawrence Radiation Laboratory, Livermore, CA, Report No. UCRL 50422.
13.
Aslam
,
T. D.
,
2018
, “
Shock Temperature Dependent Rate Law for Plastic Bonded Explosives
,”
J. Appl. Phys.
,
123
(
14
), p.
145901
.10.1063/1.5020172
14.
Cooper
,
P. W.
,
1996
,
Explosives Engineering
,
Wiley
, Hoboken, NJ.
15.
Murnaghan
,
F. D.
,
1944
, “
The Compressibility of Media Under Extreme Pressures
,”
Proc. Natl. Acad. Sci.
,
30
(
9
), pp.
244
247
.10.1073/pnas.30.9.244
16.
Menikoff
,
R.
,
2012
, “
Deflagration Wave Profiles
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR
12
20353
.
17.
Cook
,
A. W.
,
2009
, “
Enthalpy Diffusion in Multicomponent Flows
,”
Phys. Fluids
,
21
(
5
), p.
055109
.10.1063/1.3139305
18.
Powers
,
J. M.
,
2016
,
Combustion Thermodynamics and Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
19.
Wescott
,
B. L.
,
Stewart
,
D. S.
, and
Davis
,
W. C.
,
2005
, “
Equation of State and Reaction Rate for Condensed-Phase Explosives
,”
J. Appl. Phys.
,
98
(
5
), p.
053514
.10.1063/1.2035310
20.
Menikoff
,
R.
, and
Shaw
,
M. S.
,
2012
, “
The SURF Model and the Curvature Effect for PBX 9502
,”
Combust. Theory Modell.
,
16
(
6
), pp.
1140
1169
.10.1080/13647830.2012.713994
21.
Menikoff
,
R.
,
2017
, “
SURF Model Calibration Strategy
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR
17
22073
.
22.
Leiding
,
J. A.
,
Velizhanin
,
K. A.
,
Aslam
,
T. D.
,
Andrews
,
S. A.
,
Perriot
,
R. T.
, and
Cawkwell
,
M. J.
,
2021
, “
A New Parametrization of a 1-Step Thermal Decomposition Model of PBX-9501
,”
J. Appl. Phys.
(in preparation).
23.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.10.1016/j.jcp.2008.04.002
24.
Sedov
,
L. I.
,
1953
, “
On Integration of One Dimensional Motion of a Gas
,”
Proc. USSR Acad. Sci.
,
XC
(
5
), p.
735
.
25.
Singleton
,
R. L.
,
Israel
,
D. M.
,
Doebling
,
S. W.
,
Woods
,
C. N.
,
Kaul
,
A.
,
Walter
,
J. W.
, and
Rogers
,
M. L.
,
2017
, “
Exactpack Documentation
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR
16
23260
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
, Hoboken, NJ.
27.
Schneider
,
P. J.
,
1955
,
Conduction Heat Transfer
,
Addison-Wesley
,
Cambridge, MA
.
28.
Maxima
,
2014
, “
Maxima, a Computer Algebra System. Version 5.34.1
,” accessed Jan. 4, 2022, http://maxima.sourceforge.net location is online
29.
Menikoff
,
R.
,
2015
, “
Detonation Wave Profiles
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR
15
29498
.
30.
Lambert
,
D. E.
,
Stewart
,
D. S.
,
Yoo
,
S.
, and
Wescott
,
B. L.
,
2005
, “
Experimental Validation of Detonation Shock Dynamics in Condensed Explosives
,”
J. Fluid Mech.
,
546
(
1
), pp.
227
253
.10.1017/S0022112005007160
31.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
2020
, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nature Methods
, 17, pp. 261–272.10.1038/s41592-019-0686-2
32.
Hunter
,
J. D.
,
2007
, “
Matplotlib: A 2D Graphics Environment
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
90
95
.10.1109/MCSE.2007.55
33.
Oliphant
,
T.
,
2006
,
A Guide to NumPy
,
Trelgol Publishing
.
34.
Behnel
,
S.
,
Bradshaw
,
R.
,
Citro
,
C.
,
Dalcin
,
L.
,
Seljebotn
,
D. S.
, and
Smith
,
K.
,
2011
, “
Cython: The Best of Both Worlds
,”
Comput. Sci. Eng.
,
13
(
2
), pp.
31
39
.10.1109/MCSE.2010.118
35.
Mattsson
,
A. E.
,
2016
, “
Short Introduction to Relations Between Thermodynamic Quantities
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND
2016
2112
.
You do not currently have access to this content.