Abstract

Model validation for real-world systems involves multiple sources of uncertainty, multivariate model outputs, and often a limited number of measurement samples. These factors preclude the use of many existing validation metrics, or at least limit the ability of the practitioner to derive insights from computed metrics. This paper seeks to extend the area metric (univariate only) and the model reliability metric (univariate and multivariate) to account for these issues. The model reliability metric was found to be more extendable to multivariate outputs, whereas the area metric presented some difficulties. Metrics of different types (area and model reliability), dimensionality (univariate and multivariate), and objective (bias effects, shape effects, or both) are used together in a “multimetric” approach that provides a more informative validation assessment. The univariate metrics can be used for output-by-output model diagnosis and the multivariate metrics contributes an overall model assessment that includes correlation among the outputs. The extensions to the validation metrics in this paper address limited measurement sample size, improve the interpretability of the metric results by separating the effects of distribution bias and shape, and enhance the model reliability metric's tolerance parameter. The proposed validation approach is demonstrated with a bivariate numerical example and then applied to a gas turbine engine heat transfer model.

References

1.
AIAA
,
1998
,
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,
American Institute of Aeronautics and Astronautics
, AIAA-G-077-1998, Reston, VA.
2.
ASME
,
2020
,
V&V10-2019 Standard for Verification and Validation in Computational Solid Mechanics
,
American Society of Mechanical Engineers
.
3.
Comité Europeen de Normalisation,
2014
, “
CEN16799:
Validation of Computational Solid Mechanics Models
,” Brussels: Comité Europeen de Normalisation.
4.
ASME,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
(Reaffirmed 2016),”
ASME
Paper No. V&V20-2009.10.1115/V&V20-2009
5.
NASA,
2008
, “
Standard for Models and Simulations
,” Report No. NASA-STD-7009A.
6.
ASME
,
2018
,
Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices
,
ASME
Paper No. V&V-40-2018.10.1115/V&V-40-2018
7.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, New York.
8.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
9.
ASME
,
2018
, PTC 19.1-2018 (Revision of ASME PTC 19.1-2013),
American Society of Mechanical Engineers
.
10.
Mullins
,
J.
,
2014
, “
Resource Allocation for Uncertainty Quantification and Reduction
,” Ph.D. thesis,
Vanderbilt University
,
Nashville, TN
.
11.
Ling
,
Y.
, and
Mahadevan
,
S.
,
2013
, “
Quantitative Model Validation Techniques: New Insights
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
217
231
.10.1016/j.ress.2012.11.011
12.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.10.1016/j.jcp.2006.03.037
13.
Romero
,
V.
,
2011
, “
Comparison of Several Model Validation Conceptions Against a “Real Space” End-to-End Approach
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
396
420
.10.4271/2011-01-0238
14.
Sankararaman
,
S.
, and
Mahadevan
,
S.
,
2015
, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems
,”
Reliab. Eng. Syst. Saf.
,
138
, pp.
194
209
.10.1016/j.ress.2015.01.023
15.
Li
,
C.
, and
Mahadevan
,
S.
,
2016
, “
Role of Calibration, Validation, and Relevance in Multi-Level Uncertainty Integration
,”
Reliab. Eng. Syst. Saf.
,
148
, pp.
32
43
.10.1016/j.ress.2015.11.013
16.
Mullins
,
J.
,
Ling
,
Y.
,
Mahadevan
,
S.
,
Sun
,
L.
, and
Strachan
,
A.
,
2016
, “
Separation of Aleatory and Epistemic Uncertainty in Probabilistic Model Validation
,”
Reliab. Eng. Syst. Saf.
,
147
, pp.
49
59
.10.1016/j.ress.2015.10.003
17.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p. 071005.10.1115/1.4004223
18.
Maupin
,
K. A.
,
Swiler
,
L. P.
, and
Porter
,
N. W.
,
2018
, “
Validation Metrics for Deterministic and Probabilistic Data
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
3
(
3
), p. 031002.10.1115/1.4042443
19.
Gardner
,
P.
,
Lord
,
C.
, and
Barthorpe
,
R. J.
,
2018
, “
An Evaluation of Validation Metrics for Probabilistic Model Outputs
,” Verification and Validation,
ASME
Paper No. VVS2018-9327.10.1115/VVS2018-9327
20.
Dvurecenska
,
K.
,
2019
,
Developing Quantitative Validation Metrics to Assess Quality of Computational Mechanics Models Relative to Reality
,
The University of Liverpool
,
Liverpool, UK
.
21.
Gardner
,
P.
,
Lord
,
C.
, and
Barthorpe
,
R. J.
,
2019
, “
A Unifying Framework for Probabilistic Validation Metrics
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
4
(
3
), p. 031005.10.1115/1.4045296
22.
Riedmaier
,
S.
,
Danquah
,
B.
,
Schick
,
B.
, and
Diermeyer
,
F.
,
2021
, “
Unified Framework and Survey for Model Verification, Validation and Uncertainty Quantification
,”
Arch. Comput. Methods Eng.
,
28
(
4
), pp.
2655
2688
.10.1007/s11831-020-09473-7
23.
Hills
,
R. G.
, and
Trucano
,
T. G.
,
2002
, “
Statistical Validation of Engineering and Scientific Models: A Maximum Likelihood Based Metric; Topical
,”
Sandia National Labs
., Report No. SAND2001-1783.
24.
McFarland
,
J.
, and
Mahadevan
,
S.
,
2008
, “
Multivariate Significance Testing and Model Calibration Under Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2467
2479
.10.1016/j.cma.2007.05.030
25.
McFarland
,
J.
, and
Mahadevan
,
S.
,
2008
, “
Error and Variability Characterization in Structural Dynamics Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2621
2631
.10.1016/j.cma.2007.07.029
26.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2006
, “
Model Predictive Capability Assessment Under Uncertainty
,”
AIAA J.
,
44
(
10
), pp.
2376
2384
.10.2514/1.19103
27.
Rebba
,
R.
, and
Mahadevan
,
S.
,
2008
, “
Computational Methods for Model Reliability Assessment
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1197
1207
.10.1016/j.ress.2007.08.001
28.
Wagner Whiting
,
N.
,
2019
, “
Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
29.
De Maesschalck
,
R.
,
Jouan-Rimbaud
,
D.
, and
Massart
,
D. L.
,
2000
, “
The Mahalanobis Distance
,”
Chemom. Intell. Lab. Syst.
,
50
(
1
), pp.
1
18
.10.1016/S0169-7439(99)00047-7
30.
Nentwig
,
M.
,
Miegler
,
M.
, and
Stamminger
,
M.
,
2012
, “
Concerning the Applicability of Computer Graphics for the Evaluation of Image Processing Algorithms
,” IEEE International Conference on Vehicular Electronics and Safety (
ICVES 2012
), IEEE, Istanbul, Turkey, July 24–27, pp.
205
210
.10.1109/ICVES.2012.6294288
31.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
, pp.
1
11
.10.1016/j.ress.2014.02.002
32.
Li
,
L.
, and
Lu
,
Z.
,
2018
, “
A New Method for Model Validation With Multivariate Output
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
579
592
.10.1016/j.ress.2017.10.005
33.
Casella
,
G.
, and
Berger
,
R. L.
,
2002
,
Statistical Inference
,
Cengage Learning
, Belmont, CA.
34.
White
,
A.
,
Mahadevan
,
S.
,
Grey
,
Z.
,
Schmucker
,
J.
, and
Karl
,
A.
,
2021
, “
Efficient Calibration of a Turbine Disc Heat Transfer Model Under Uncertainty
,”
J. Thermophys. Heat Transfer
,
35
(
2
), pp.
234
244
.10.2514/1.T6047
35.
Smith
,
R. C.
,
2014
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
SIAM
, Philadelphia, PA.
36.
Wang
,
B.
,
Shi
,
W.
, and
Miao
,
Z.
,
2015
, “
Confidence Analysis of Standard Deviational Ellipse and Its Extension Into Higher Dimensional Euclidean Space
,”
PLoS One
,
10
(
3
), p.
e0118537
.10.1371/journal.pone.0118537
37.
Doornik
,
J. A.
, and
Hansen
,
H.
,
2008
, “
An Omnibus Test for Univariate and Multivariate Normality
,”
Oxford Bull. Econ. Stat.
,
70
, pp.
927
939
.10.1111/j.1468-0084.2008.00537.x
38.
Amiri
,
A.
,
Bashiri
,
M.
,
Mogouie
,
H.
, and
Hadi Doroudyan
,
M.
,
2012
, “
Non-Normal Multi-Response Optimization by Multivariate Process Capability Index
,”
Sci. Iran.
,
19
(
6
), pp.
1894
1905
.10.1016/j.scient.2012.09.008
39.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Dynamics Model Validation Using Time-Domain Metrics
,”
J. Verification, Validation Uncertainty Quantif.
,
2
(
1
), p.
011005
.10.1115/1.4036182
40.
Hombal
,
V. K.
, and
Mahadevan
,
S.
,
2013
, “
Model Selection Among Physics-Based Models
,”
ASME J. Mech. Design
,
135
(
2
), p.
021003
.10.1115/1.4023155
41.
Sandhu
,
R.
,
Khalil
,
M.
,
Sarkar
,
A.
, and
Poirel
,
D.
,
2014
, “
Bayesian Model Selection for Nonlinear Aeroelastic Systems Using Wind-Tunnel Data
,”
Comput. Methods Appl. Mech. Eng.
,
282
, pp.
161
183
.10.1016/j.cma.2014.06.013
42.
Ben Abdessalem
,
A.
,
Dervilis
,
N.
,
Wagg
,
D.
, and
Worden
,
K.
,
2018
, “
Model Selection and Parameter Estimation in Structural Dynamics Using Approximate Bayesian Computation
,”
Mech. Syst. Signal Process.
,
99
, pp.
306
325
.10.1016/j.ymssp.2017.06.017
43.
Nath
,
P.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Sensor Placement for Calibration of Spatially Varying Model Parameters
,”
J. Comput. Phys.
,
343
, pp.
150
169
.10.1016/j.jcp.2017.04.033
44.
Mainini
,
L.
, and
Willcox
,
K. E.
,
2017
, “
Sensor Placement Strategy to Inform Decisions
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Denver, CO, June 5–9, p.
3820
.10.2514/6.2017-3820
You do not currently have access to this content.