Conventional nonlinear system identification procedures estimate the system parameters in two stages. First, the nominally linear system parameters are estimated by exciting the system at an amplitude (usually low) where the behavior is nominally linear. Second, the nominally linear parameters are used to estimate the nonlinear parameters of the system at other arbitrary amplitudes. This approach is not suitable for many mechanical systems, which are not nominally linear over a broad frequency range for any operating amplitude. A method for nonlinear system identification, in the absence of an input measurement, is presented that uses information about the nonlinear elements of the system to estimate the underlying linear parameters. Restoring force, boundary perturbation, and direct parameter estimation techniques are combined to develop this approach. The approach is applied to experimental tire-vehicle suspension system data.

1.
Masri
,
S. F.
,
Caughey
,
T. K.
,
Miller
,
R. K.
, and
Saud
,
A. F.
, 1987, “
Identification of Nonlinear Vibrating Structures. Part I: Formulation
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
918
922
.
2.
Masri
,
S. F.
,
Caughey
,
T. K.
,
Miller
,
R. K.
, and
Saud
,
A. F.
, 1987, “
Identification of Nonlinear Vibrating Structures. Part II: Applications
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
923
929
.
3.
Mohammed
,
K. S.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
, 1992, “
Direct Parameter Estimation for Linear and Non-Linear Structures
,”
J. Sound Vib.
0022-460X,
152
(
3
), pp.
471
499
.
4.
Richards
,
C. M.
, and
Singh
,
R.
, 1998, “
Identification of Multi-Degree-of-Freedom Non-Linear Systems under Random Excitations by the “Reverse Path” Spectral Method
,”
J. Sound Vib.
0022-460X,
213
(
4
), pp.
673
708
.
5.
Roberts
,
J. B.
,
Dunne
,
J. F.
, and
Debunos
,
A.
, 1995, “
A Spectral Method for Estimation of Non-Linear System Parameters from Measured Response
,”
Probab. Eng. Mech.
0266-8920,
10
, pp.
199
207
.
6.
Yi
,
K.
, and
Hedrick
,
K.
, 1995, “
Observer-Based Identification of Non-Linear System Parameters
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434
117
, pp.
175
182
.
You do not currently have access to this content.