Recently, research on new techniques for dissipative mufflers in dealing with the higher frequencies has been addressed. However, the shape optimization of hybrid mufflers in reducing broadband noise within a constrained space as well as a pressure-drop limit which are both concerned with the necessity of operation and system venting in practical engineering work was rarely tackled. Therefore, this study will not only analyze the sound transmission loss (STL) of a space-constrained multichamber hybrid muffler but also optimize the best design shape under a specified pressure drop. In this paper, the generalized decoupling technique and plane wave theory used to solve the coupled acoustical problem of perforated mufflers with/without sound absorbing material are presented. The four-pole system matrix used to evaluate acoustic performance is also introduced in conjunction with a genetic algorithm (GA). A numerical case for eliminating a broadband venting noise emitted from a pressure relief valve using four kinds of hybrid mufflers is also introduced. To verify the reliability of the GA optimization, optimal noise abatement for a pure tone (1000 Hz) is exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models need to be checked using the experimental data. The optimal result in eliminating broadband noise reveals that the overall noise reductions with respect to various mufflers under a maximal allowable pressure drop of 100 Pa can achieve 62.6, 54.8, 32.3 and 87.8 dB. Consequently, the approach used for the optimal design of the multichamber hybrid mufflers under space and back pressure constrained conditions is indeed easy and quite effective.
Skip Nav Destination
e-mail: minchie.chiu@msa.hinet.net
Article navigation
April 2012
Research Papers
Genetic Algorithm Optimization on a Venting System With Three-Chamber Hybrid Mufflers Within a Constrained Back Pressure and Space
Min-Chie Chiu
Min-Chie Chiu
Department of Mechanical and Automation Engineering,
e-mail: minchie.chiu@msa.hinet.net
Chung Chou University of Science and Technology
, Yuanlin, Changhua 51003, Taiwan
, R.O.C.
Search for other works by this author on:
Min-Chie Chiu
Department of Mechanical and Automation Engineering,
Chung Chou University of Science and Technology
, Yuanlin, Changhua 51003, Taiwan
, R.O.C.e-mail: minchie.chiu@msa.hinet.net
J. Vib. Acoust. Apr 2012, 134(2): 021005 (11 pages)
Published Online: January 18, 2012
Article history
Received:
November 9, 2010
Revised:
September 28, 2011
Online:
January 18, 2012
Published:
January 18, 2012
Citation
Chiu, M. (January 18, 2012). "Genetic Algorithm Optimization on a Venting System With Three-Chamber Hybrid Mufflers Within a Constrained Back Pressure and Space." ASME. J. Vib. Acoust. April 2012; 134(2): 021005. https://doi.org/10.1115/1.4005220
Download citation file:
Get Email Alerts
Numerical Analysis of the Tread Grooves’ Acoustic Resonances for the Investigation of Tire Noise
J. Vib. Acoust (August 2024)
Related Articles
Optimal Design of Multichamber Mufflers Hybridized With Perforated Intruding Inlets and Resonating Tubes Using Simulated Annealing
J. Vib. Acoust (October,2010)
Modeling perforates in mufflers using two-ports
J. Vib. Acoust (December,2010)
A New Type of Muffler Based on Microperforated Tubes
J. Vib. Acoust (June,2011)
Experimental Characterization of Noise Sources for Duct Acoustics
J. Vib., Acoust., Stress, and Reliab (January,1989)
Related Proceedings Papers
Related Chapters
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition
Glioma Biology
Nanoparticles and Brain Tumor Treatment