This paper presents a recent research advance on the development of a novel adaptive seismic isolation system to be used in seismic protection of civil structures. A highly adjustable laminated magnetorheological elastomer (MRE) base isolator was developed and experimental results show that the prototypical MRE base isolator provides increase in lateral stiffness up to 1630%. To facilitate the structural control development using such adaptive MRE base isolator, an analytical model was developed to simulate its behaviors. Comparison between the analytical model and experimental data proves the effectiveness of such model in reproducing the behavior of MRE base isolator.

References

1.
Naeim
,
F.
, and
Kelly
,
J. M.
,
1999
,
Design of Seismic Isolated Structures: From Theory to Practice
,
John Wiley and Sons
,
Hoboken, NJ
, Chap. 1–3.
2.
Komodromos
,
P.
,
2001
,
Seismic Isolation for Earthquake Resistant Structures
,
WIT Press
,
Southampton, UK
, Chap. 3.
3.
Kelly
,
J. M.
,
1990
, “
Base Isolation: Linear Theory and Design
,”
Earthquake Spectra
,
6
(
2
), pp.
223
244
.10.1193/1.1585566
4.
Yoshioka
,
H.
,
Ramallo
,
J. C.
, and
Spencer
,
B. F.
, Jr
.,
2002
, “
‘Smart’ Base Isolation Strategies Employing Magnetorheological Dampers
,”
ASCE J. Eng. Mech.
,
128
(
5
), pp.
540
551
.10.1061/(ASCE)0733-9399(2002)128:5(540)
5.
Jangid
,
R. S.
, and
Kelly
,
J. M.
,
2001
, “
Base Isolation for Near-Fault Motions Earthquake
,”
Earthquake Eng. Struct. Dyn.
,
30
(
5
), pp.
691
707
.10.1002/eqe.31
6.
Mazza
,
F.
, and
Vulcano
,
A.
,
2012
, “
Effects of Near-Fault Ground Motions on the Nonlinear Dynamic Response of Base-Isolated RC Framed Buildings
,”
Earthquake Eng. Struct. Dyn.
,
41
(
2
), pp.
211
232
.10.1002/eqe.1126
7.
Nagarajaiah
,
S.
,
2006
, “
Structural Control Benchmark Problem: Smart Base Isolated Building Subjected to Near Fault Earthquakes
,”
Struct. Control Health Monit.
,
13
(
2–3
), pp.
571
572
.10.1002/stc.98
8.
Chopra
,
A. K.
, and
Chintanapakdee
,
C.
,
2001
, “
Comparing Response of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions
,”
Earthquake Eng. and Struct. Dyn.
,
30
(
12
), pp.
1769
1789
.10.1002/eqe.92
9.
Abdalla
,
J. A.
,
Petrovski
,
J. T.
, and
Mohamedzein
,
Y. E.-A.
,
2008
, “
Vibration Characteristics of a Far-Field Earthquake and Its Shaking Effects on Dubai Emerging Skycrapers
,”
14th World Conference on Earthquake Engineering
,
Beijing, China
, October 12–17.
10.
Kim
,
H. S.
,
Roschke
,
P. N.
,
Lin
,
P. Y.
, and
Loh
,
C. H.
,
2006
, “
Neuro-Fuzzy Model of Hybrid Semi-Active Base Isolation System With FPS Bearings and an MR Damper
,”
Eng. Struct.
,
28
(
7
), pp.
947
958
.10.1016/j.engstruct.2005.09.029
11.
Kelly
,
J. M.
,
1999
, “
The Role of Damping in Seismic Isolation
,”
Earthquake Eng. Struct. Dyn.
,
28
(
1
), pp.
3
20
.10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D
12.
Li
,
Y.
,
Li
,
J.
,
Li
,
W.
, and
Samali
,
B.
,
2013
, “
Development and Characterization of a Magnetorheological Elastomer Based Adaptive Seismic Isolator
,”
Smart Mater. Struct.
,
22
(
3
), p.
035005
.10.1088/0964-1726/22/3/035005
13.
Li
,
J.
,
Li
,
Y.
,
Li
,
W.
, and
Samali
,
B.
,
2013
, “
Development of Adaptive Seismic Isolators for Ultimate Seismic Protection of Civil Structures
,”
Proc. SPIE
, 8692, p. 86920H.10.1117/12.2009626
14.
Li
,
Y.
,
Li
,
J.
,
Tian
,
T.
, and
Li
,
W.
,
2013
, “
A Highly Adjustable Magnetorheological Elastomer Base Isolator for Applications of Real-Time Adaptive Control
,”
Smart Mater. Struct.
,
22
(
9
), p.
095020
.10.1088/0964-1726/22/9/095020
15.
Popp
,
K.
,
Kroger
,
M.
,
Li
,
W.
,
Zhang
,
X.
, and
Kosasih
,
P.
,
2010
, “
MRE Properties Under Shear and Squeeze Modes and Applications
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1471
1477
.10.1177/1045389X09355666
16.
Abramchuk
,
S. S.
,
Grishin
,
D. A.
,
Kramarenko
,
E. Y.
,
Stepanov
,
G. V.
, and
Khokhlov
,
A. R.
,
2006
, “
Effect of a Homogeneous Magnetic Field on the Mechanical Behaviour of Soft Magnetic Elastomers Under Compression
,”
Polym. Sci. Ser. A
,
48
(
2
), pp.
138
145
.10.1134/S0965545X06020064
17.
Ginder
,
J. M.
,
Scholotter
,
W. F.
, and
Nichols
,
M. E.
,
2001
, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,”
Proc. SPIE
,
4331
, pp.
103
110
.10.1117/12.432694
18.
Deng
,
H. X.
,
Gong
,
X. L.
, and
Wang
,
L. H.
,
2006
, “
Development of an Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
15
(
5
), p.
N111
.10.1088/0964-1726/15/5/N02
19.
Lerner
,
A. A.
, and
Cunefare
,
K. A.
,
2008
, “
Performance of MRE-Based Vibration Absorber
,”
J. Intell. Mater. Syst. Struct.
,
19
(
5
), pp.
551
563
.10.1177/1045389X07077850
20.
Liao
,
G. J.
,
Gong
,
X. L.
,
Xuan
,
S. H.
,
Kang
,
C. J.
, and
Zong
,
L. H.
,
2012
, “
Development of a Real-Time Tunable Stiffness and Damping Vibration Isolator Based on Magnetorheological Elastomer
,”
J. Intell. Mater. Syst. Struct.
,
23
(
1
), pp.
25
33
.10.1177/1045389X11429853
21.
Behrooz
,
M.
,
Wang
,
X.
, and
Gordaninejad
,
F.
,
2014
, “
Performance of a New Magnetorheological Elastomer Isolation System
,”
Smart Mater. Struct.
,
23
(
4
), p.
045014
.10.1088/0964-1726/23/4/045014
22.
Yang
,
J.
,
Du
,
H.
,
Li
,
W.
,
Li
,
Y.
,
Li
,
J.
,
Sun
,
S.
, and
Deng
,
H. X.
,
2013
, “
Experimental Study and Modeling of a Novel Magnetorheological Elastomer Isolator
,”
Smart Mater. Struct.
,
22
(
11
), p.
117001
.10.1088/0964-1726/22/11/117001
You do not currently have access to this content.