The integrity and reliability of a rotor depend significantly on the dynamic characteristics of its bearings. Bearing design has been altered in many ways in order to achieve improvement in terms of damping and stiffness. A promising field in terms of vibration control and overall performance improvement for the journal bearings is the use of smart lubricants. Smart lubricants are fluids with controllable properties. A suitable excitation, such as an electric or a magnetic field, is used as a means of smart fluid properties control. Magnetorheological (MR) fluids consist one category of lubricants with controllable properties, thanks to magnetic particles inside the fluid volume. In this case of material, a magnetostatic field affects the apparent viscosity of the fluid by aligning the magnetic particles into chains. In this work, an MR fluid is produced. An MR fluid film bearing was constructed, which is capable of exciting the MR fluid. These bearing performances are examined experimentally and its dynamic properties are evaluated using an impact excitation method for an SAE-10 W lubricant as well as with the produced MR fluid both in its active and in its inactive state.

References

1.
Wang
,
D.
, and
Liao
,
W.
,
2011
, “
Magnetorheological Fluid Dampers: A Review of Parametric Modelling
,”
Smart Mater. Struct.
,
20
(
2
), p.
023001
.
2.
Zhang
,
H. H.
,
Xu
,
H. P.
,
Liao
,
C. R.
, and
Deng
,
Z. X.
,
2012
, “
Dynamic Response of Magnetorheological Fluid Damper for Automotive Suspension and the Influence by Long-Time Standing-Still
,”
Appl. Mech. Mater.
,
105–107
, pp.
1689
1692
.
3.
Xu
,
F.-H.
,
Xu
,
Z.-D.
,
Zhang
,
X.-C.
,
Guo
,
Y.-Q.
, and
Lu
,
Y.
,
2016
, “
A Compact Experimentally Validated Model of Magnetorheological Fluids
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011017
.
4.
Hung
,
N. Q.
, and
Bok
,
C. S.
,
2012
, “
Optimal Design of a T-Shaped Drum-Type Brake for Motorcycle Utilizing Magnetorheological Fluid
,”
Mech. Based Des. Struct. Mach.
,
40
(
2
), pp.
153
162
.
5.
Salloom
,
M. Y.
, and
Samad
,
Z.
,
2011
, “
Finite Element Modeling and Simulation of Proposed Design Magneto-Rheological Valve
,”
Int. J. Adv. Manuf. Technol.
,
54
(
5
), pp.
421
429
.
6.
Wiltsie
,
N.
,
Lanzetta
,
M.
, and
Iagnemma
,
K.
,
2012
, “
A Controllably Adhesive Climbing Robot Using Magnetorheological Fluid
,”
IEEE International Conference on Technologies for Practical Robot Applications
(
TePRA
), Woburn, MA, Apr. 23–24, pp.
91
96
.
7.
Kim
,
I.
,
Song
,
K.
,
Park
,
B.
,
Choi
,
B.
, and
Choi
,
H. J.
,
2011
, “
Nano-Sized Fe Soft-Magnetic Particle and Its Magnetorheology
,”
Colloid Polym. Sci.
,
289
(
1
), pp.
79
83
.
8.
Vékás
,
L.
,
2008
, “
Ferrofluids and Magnetorheological Fluids
,”
Adv. Sci. Technol.
,
54
, pp.
127
136
.
9.
Wang
,
J.
,
Meng
,
G.
,
Feng
,
N.
, and
Hahn
,
E.
,
2005
, “
Dynamic Performance and Control of Squeeze Mode MR Fluid Damper–Rotor System
,”
Smart Mater. Struct.
,
14
(
4
), p.
529
.
10.
Fijalkowski
,
B.
,
2011
, “
A Novel Internal Combustion Engine Without Crankshaft and Connecting Rod Mechanisms
,”
J. KONES Powertrain Transp.
,
18
(
4
), pp.
91
104
.
11.
Li
,
Q.
,
Yu
,
G.
,
Liu
,
S.
, and
Zheng
,
S.
,
2012
, “
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled With Rotor Systems
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
926
932
.
12.
Chouksey
,
M.
,
Dutt
,
J. K.
, and
Modak
,
S. V.
,
2012
, “
Modal Analysis of Rotor-Shaft System Under the Influence of Rotor-Shaft Material Damping and Fluid Film Forces
,”
Mech. Mach. Theory
,
48
, pp.
81
93
.
13.
Forte
,
P.
,
Paterno
,
M.
, and
Rustighi
,
E.
,
2004
, “
A Magnetorheological Fluid Damper for Rotor Applications
,”
Int. J. Rotating Mach.
,
10
(
3
), pp.
175
182
.
14.
Urreta
,
H.
,
Leicht
,
Z.
,
Sanchez
,
A.
,
Agirre
,
A.
,
Kuzhir
,
P.
, and
Magnac
,
G.
,
2010
, “
Hydrodynamic Bearing Lubricated With Magnetic Fluids
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1491
1499
.
15.
Chaudhuri
,
A.
,
Wang
,
G.
,
Wereley
,
N.
,
Tasovksi
,
V.
, and
Radhakrishnan
,
R.
,
2005
, “
Substitution of Micron by Nanometer Scale Powders in Magnetorheological Fluids
,”
Int. J. Mod. Phys. B
,
19
(
7–9
), pp.
1374
1380
.
16.
Mitsoulis
,
E.
,
2007
, “
Flows of Viscoplastic Materials: Models and Computations
,”
Rheol. Rev.
, pp.
135
178
.
17.
Varela
,
A. C.
, and
Santos
, I
. F.
,
2014
, “
Tilting-Pad Journal Bearings With Active Lubrication Applied as Calibrated Shakers: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061010
.
18.
Hesselbach
,
J.
, and
Abel-Keilhack
,
C.
,
2003
, “
Active Hydrostatic Bearing With Magnetorheological Fluid
,”
J. Appl. Phys.
,
93
(
10
), pp.
8441
8443
.
19.
Schultz
,
W. W.
,
Han
,
H.-C.
,
Boyd
,
J. P.
, and
Schumack
,
M.
,
1997
, “
An Analysis of the Oil-Whirl Instability
,”
50th Annual Meeting of the American Physical Society
Division of Fluid Dynamics Meeting, San Francisco, CA, Nov. 23–25, Abstract No. He.08.
20.
San Andrés
,
L.
,
2012
, “
Extended Finite Element Analysis of Journal Bearing Dynamic Forced Performance to Include Fluid Inertia Force Coefficients
,”
ASME
Paper No. IMECE2012-87713.
21.
Tiwari
,
R.
,
Lees
,
A.
, and
Friswell
,
M.
,
2004
, “
Identification of Dynamic Bearing Parameters: A Review
,”
Shock Vib. Dig.
,
36
(
2
), pp.
99
124
.
22.
Gertzos
,
K.
,
Nikolakopoulos
,
P.
, and
Papadopoulos
,
C.
,
2008
, “
CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
.
23.
Glienicke
,
J.
,
Han
,
D. C.
, and
Leonhard
,
M.
,
1980
, “
Practical Determination and Use of Bearing Dynamic Coefficients
,”
Tribol. Int.
,
13
(
6
), pp.
297
309
.
24.
Bompos
,
D. A.
, and
Nikolakopoulos
,
P. G.
,
2014
, “
Journal Bearing Stiffness and Damping Coefficients Using Nanomagnetorheological Fluids and Stability Analysis
,”
ASME J. Tribol.
,
136
(
4
), p.
041704
.
You do not currently have access to this content.