A two-stage numerical model is developed to understand the energy transmission characteristics through a finite double-leaf structure placed in an infinite baffle subjected to an external excitation and subsequently the sound radiation behavior of the same into the semi-infinite receiving side. In the first stage, a mobility-based coupled finite element–boundary element (FE–BE) technique is implemented to model the energy transmission from the primary panel to the secondary panel through an air gap. In the second stage, a separate boundary element (BE)-based model is developed to estimate the sound power radiated by the radiating (secondary) panel into the receiving side which is assumed to be semi-infinite. The advantage of the proposed approach is that it is sufficient to mesh the structural panels alone, thereby reducing the problem dimensions and the difficulty in modeling. Moreover, the developed model can be easily implemented for structures made up of various constituent materials (isotropic or laminated composites) with complex boundary conditions and varying panel geometries. Numerical experiments are carried out for different material models by varying air-gap thicknesses and also by introducing alternate energy transmission path in terms of mechanical links and the obtained results are discussed.

References

1.
Cazzolato
,
B. S.
,
1999
, “
Sensing System for Active Control of Sound Transmission Into Cavities
,”
Ph.D. thesis
, The University of Adelaide, Adelaide, Australia.
2.
Beranek
,
L. L.
, and
Work
,
G. A.
,
1949
, “
Sound Transmission Through Multiple Structures Containing Flexible Blankets
,”
J. Acoust. Soc. Am.
,
21
(
4
), pp.
419
428
.
3.
London
,
A.
,
1950
, “
Transmission of Reverberant Sound Through Double Walls
,”
J. Acoust. Soc. Am.
,
22
(
2
), pp.
270
279
.
4.
Price
,
A. J.
, and
Crocker
,
M. J.
,
1970
, “
Sound Transmission Through Double Panels Using Statistical Energy Analysis
,”
J. Acoust. Soc. Am.
,
47
(
3
), pp.
683
693
.
5.
Donato
,
R. J.
,
1972
, “
Sound Transmission Through a Double-Leaf Wall
,”
J. Acoust. Soc. Am.
,
51
(
3
), pp.
807
815
.
6.
Takahashi
,
D.
,
1983
, “
Sound Radiation From Periodically Connected Double-Plate Structures
,”
J. Sound Vib.
,
90
(
4
), pp.
541
557
.
7.
Yairia
,
M.
,
Sakagami
,
K.
,
Sakagami
,
E.
,
Morimoto
,
M.
,
Minemura
,
A.
, and
Andow
,
K.
,
2002
, “
Sound Radiation From a Double-Leaf Elastic Plate With a Point Force Excitation: Effect of an Interior Panel on the Structure-Borne Sound Radiation
,”
Appl. Acoust.
,
63
(
7
), pp.
737
757
.
8.
Wang
,
J.
,
Lu
,
T. J.
,
Woodhouse
,
J.
,
Langley
,
R. S.
, and
Evans
,
J.
,
2005
, “
Sound Transmission Through Lightweight Double-Leaf Partitions: Theoretical Modelling
,”
J. Sound Vib.
,
286
(4–5), pp.
817
847
.
9.
White
,
P. H.
, and
Powell
,
A.
,
1966
, “
Transmission of Random Sound and Vibration Through a Rectangular Double Wall
,”
J. Acoust. Soc. Am.
,
40
(
4
), pp.
821
832
.
10.
Cheng
,
L.
,
Li
,
Y. Y.
, and
Gao
,
J. X.
,
2005
, “
Energy Transmission in a Mechanically-Linked Double-Wall Structure Coupled to an Acoustic Enclosure
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
2742
2751
.
11.
Leppington
,
F. G.
,
Broadbent
,
E. G.
, and
Butler
,
G. F.
,
2006
, “
Transmission of Sound Through a Pair of Rectangular Elastic Plates
,”
IMA J. Appl. Math.
,
71
(
6
), pp.
940
955
.
12.
Xin
,
F. X.
,
Lu
,
T. J.
, and
Chen
,
C. Q.
,
2009
, “
Dynamic Response and Acoustic Radiation of Double-Leaf Metallic Panel Partition Under Sound Excitation
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
728
732
.
13.
Xin
,
F. X.
,
Lu
,
T. J.
, and
Chen
,
C. Q.
,
2010
, “
Sound Transmission Through Simply Supported Finite Double-Panel Partitions With Enclosed Air Cavity
,”
ASME J. Vib. Acoust.
,
132
(1), p. 011008.
14.
Shi
,
S.
,
Jin
,
G.
, and
Liu
,
Z.
,
2014
, “
Vibro-Acoustic Behaviors of an Elastically Restrained Double-Panel Structure With an Acoustic Cavity of Arbitrary Boundary Impedance
,”
Appl. Acoust.
,
76
, pp.
431
444
.
15.
Xin
,
F. X.
, and
Lu
,
T. J.
,
2009
, “
Analytical and Experimental Investigation on Transmission Loss of Clamped Double Panels: Implication of Boundary Effects
,”
J. Acoust. Soc. Am.
,
125
(
3
), pp.
1506
1517
.
16.
Xin
,
F. X.
,
Lu
,
T. J.
, and
Chen
,
C. Q.
,
2008
, “
Vibroacoustic Behavior of Clamp Mounted Double-Panel Partition With Enclosure Air Cavity
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3604
3612
.
17.
Arjunan
,
A.
,
Wang
,
C. J.
,
Yahiaoui
,
K.
,
Mynors
,
D. J.
,
Morgan
,
T.
, and
English
,
M.
,
2013
, “
Finite Element Acoustic Analysis of a Steel Stud Based Double-Leaf Wall
,”
Build. Environ.
,
67
, pp.
202
210
.
18.
Arjunan
,
A.
,
Wang
,
C. J.
,
Yahiaoui
,
K.
,
Mynors
,
D. J.
,
Morgan
,
T.
, and
Nguyen
,
V. B.
,
2014
, “
Development of a 3D Finite Element Acoustic Model to Predict the Sound Reduction Index of Stud Based Double-Leaf Walls
,”
J. Sound Vib.
,
333
(
23
), pp.
6140
6155
.
19.
Ghosh
,
S.
, and
Bhattacharya
,
P.
,
2015
, “
Energy Transmission Through a Double-Wall Curved Stiffened Panel Using Green's Theorem
,”
J. Sound Vib.
,
342
, pp.
218
240
.
20.
Shen
,
C.
,
Xin
,
F. X.
, and
Lu
,
T. J.
,
2016
, “
Sound Transmission Across Composite Laminate Sandwiches: Influence of Orthogonal Stiffeners and Laminate Layup
,”
Compos. Struct.
,
143
, pp.
310
316
.
21.
Griese
,
D.
,
Summers
,
J. D.
, and
Thompson
,
L.
,
2015
, “
The Effect of Honeycomb Core Geometry on the Sound Transmission Performance of Sandwich Panels
,”
ASME J. Vib. Acoust.
,
137
(2), p.
021011
.
22.
Suzuki
,
S.
,
Maruyama
,
S.
, and
Ido
,
H.
,
1989
, “
Boundary Element Analysis of Cavity Noise Problems With Complicated Boundary Conditions
,”
J. Sound Vib.
,
130
(
1
), pp.
79
96
.
23.
Sgard
,
F. C.
,
Atalla
,
N.
, and
Nicolas
,
J.
,
2000
, “
A Numerical Model for the Low Frequency Diffuse Field Sound Transmission Loss of Double-Wall Sound Barriers With Elastic Porous Linings
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2865
2872
.
24.
Coyette
,
J. P.
, and
Van de Peer
,
J.
,
1994
, “
Acoustic Boundary Elements, Advanced Techniques in Applied and Numerical Acoustics
,” ISAAC 5, KU Leuven, Leuven, Belgium, Sept. 17–19, pp.
1
31
.
25.
Seybert
,
A. F.
, and
Cheng
,
C. Y. R.
,
1987
, “
Application of the Boundary Element Method to Acoustic Cavity Response and Muffler Analysis
,”
J. Vib. Acoust. Stress Reliab. Des.
,
109
(
1
), pp.
15
21
.
26.
Guha Niyogi
,
A.
,
Laha
,
M. K.
, and
Sinha
,
P. K.
,
2000
, “
Coupled FE–BE Analysis of Acoustic Cavities Confined Inside Laminated Composite Enclosures
,”
Aircr. Eng. Aerosp. Technol.
,
72
(
4
), pp.
345
357
.
27.
Fahy
,
F.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration: Radiation, Transmission and Response
, 2nd ed.,
Academic Press
, Oxford,
UK
.
28.
Seybert
,
A. F.
, and
Wu
,
T. W.
,
1989
, “
Modified Helmholtz Integral Equation for Bodies Sitting on an Infinite Plane
,”
J. Acoust. Soc. Am.
,
85
(
1
), pp.
19
23
.
29.
Lachat
,
C.
, and
Watson
,
J. O.
,
1976
, “
Effective Numerical Treatment of Boundary Integral Equations: A Formulation for Three-Dimensional Elastostatics
,”
Int. J. Numer. Methods Eng.
,
10
(
5
), pp.
991
1005
.
You do not currently have access to this content.