The Lamb wave propagation through a thin plate with periodic spatiotemporal variation of material property was investigated through numerical simulations. It was found that regular oscillations of Young's modulus in both space and time can lead to the creation of distinct band gaps for different modes of Lamb wave. Moreover, the dispersion relation for each mode was dependent on the direction of wave propagation (i.e., nonreciprocal). These results allow the Lamb wave modes to be reduced to a single mode traveling in a single direction for specific frequencies. This frequency range was observed to widen with an increasing modulation amplitude of Young's modulus but was not significantly altered by the modulation frequency. The insights derived from this study indicate that spatiotemporal control of material property can be used to effectively isolate Lamb wave modes and reduce reflections, leading to an improvement in the accuracy of the structural health monitoring of materials.

References

1.
Filho
,
J. F. M. R.
,
Tremblay
,
N.
,
Fonseca
,
G. S.
, and
Belanger
,
P.
,
2017
, “
The Feasibility of Structural Health Monitoring Using the Fundamental Shear Horizontal Guided Wave in a Thin Aluminum Plate
,”
Materials
,
10
(
5
), pp.
551
560
.
2.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.
3.
Ong
,
W. H.
, and
Chiu
,
W. K.
,
2013
, “
Designing for Lamb Wave Based In-Situ Structural Health Monitoring
,”
Key Eng. Mater.
,
558
, pp.
411
423
.
4.
Santoni
,
G. B.
,
Yu
,
L.
, and
Giurgiutiu
,
V.
,
2007
, “
Lamb Wave-Mode Tuning of Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
Trans. ASME J. Vib. Acoust.
,
129
(
6
), pp.
752
762
.
5.
Park
,
I.
,
Jun
,
Y.
, and
Lee
,
U.
,
2014
, “
Lamb Wave Mode Decomposition for Structural Health Monitoring
,”
Wave Motion
,
51
(
2
), pp.
335
347
.
6.
Ostachowicz
,
W.
, and
Radzienski
,
M.
,
2012
,
Structural Health Monitoring by Means of Elastic Wave Propagation in Modern Practice in Stress and Vibration Analysis 2012 (MPSVA 2012), 28-31
,
IOP Publishing Ltd
,
UK
.
7.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
8.
Schubert
,
K. J.
,
Brauner
,
C.
, and
Herrmann
,
A. S.
,
2014
, “
Non-Damage-Related Influences on Lamb Wave-Based Structural Health Monitoring of Carbon Fiber-Reinforced Plastic Structures
,”
Struct. Health Monit.
,
13
(
2
), pp.
158
176
.
9.
Wu
,
T. T.
,
Wu
,
Z.
,
Huang
,
G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B Condens. Matter
Mater. Phys.
69
(
9
), p.
94301
.
10.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer
,
Berlin, New York
.
11.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
12.
Akozbek
,
N.
,
Mattiucci
,
N.
,
Bloemer
,
M. J.
,
Sanghadasa
,
M.
, and
D'Aguanno
,
G.
,
2014
, “
Manipulating the Extraordinary Acoustic Transmission Through Metamaterial-Based Acoustic Band Gap Structures
,”
Appl. Phys. Lett.,
104
(
16
), pp.
161906
.
13.
Hou
,
Z.
, and
Assouar
,
B. M.
,
2008
, “
Modeling of Lamb Wave Propagation in Plate With Two-Dimensional Phononic Crystal Layer Coated on Uniform Substrate Using Plane-Wave-Expansion Method
,”
Phys. Lett. A
,
372
(
12
), pp.
2091
2097
.
14.
Zhao
,
M.
,
Xie
,
Y.
,
Zhang
,
X.
, and
Gao
,
J.
,
2013
, “
Band Gaps of Lamb Waves Propagating in One-Dimensional Periodic and Nesting Fibonacci Superlattices Thin Plates
,”
Thin Solid Films
,
546
, pp.
439
442
.
15.
Chen
,
J.-J.
, and
Han
,
X.
,
2010
, “
The Propagation of Lamb Waves in One-Dimensional Phononic Crystal Plates Bordered With Symmetric Uniform Layers
,”
Phys. Lett. A
,
374
(
31–32
), pp.
3243
3246
.
16.
Yao
,
Y.
,
Wu
,
F.
,
Zhang
,
X.
, and
Hou
,
Z.
,
2011
,”
J. Appl. Phys.
,
110
(
12
), p.
123503
.
17.
Zhu
,
X. F.
,
Liu
,
S.
,
Xu
,
T.
,
Wang
,
T.
, and
Cheng
,
J.
,
2010
, “
Investigation of a Silicon-Based One-Dimensional Phononic Crystal Plate via the Super-Cell Plane Wave Expansion Method
,”
Chin. Phys. B
,
19
(
4
), p.
044301
.
18.
Chen
,
J. J.
,
Yan
,
F.
, and
Chan
,
H.
,
2008
, “
Large Lamb Wave Band Gap in Phononic Crystals Thin Plates
,”
Appl. Phys. B: Lasers Opt.
,
90
(
3–4
), pp.
557
559
.
19.
Hou
,
Z.
, and
Assouar
,
B. M.
,
2009
, “
Numerical Investigation of the Propagation of Elastic Wave Modes in a One-Dimensional Phononic Crystal Plate Coated on a Uniform Substrate
,”
J. Phys. D: Appl. Phys.
,
42
(
8
), p.
085103
.
20.
Sun
,
J. H.
,
Lan
,
C.
,
Kuo
,
C.
, and
Wu
,
T. T.
,
2012
, “
A ZnO/Silicon Lamb Wave Filter Using Phononic Crystals
,”
2012 IEEE International Frequency Control Symposium (FCS)
,
Piscataway, NJ
,
May 21–24
.
21.
Serhane
,
R.
,
Hadj-Larbi
,
F.
,
Hassein-Bey
,
A.
, and
Khelif
,
A.
,
2018
, “
Selective Band Gap to Suppress the Spurious Acoustic Mode in Film Bulk Acoustic Resonator Structures
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031018
.
22.
Maznev
,
A. A.
,
Every
,
A. G.
, and
Wright
,
O. B.
,
2013
, “
Reciprocity in Reflection and Transmission: What is a ‘Phonon Diode?
,”
Wave Motion
,
50
(
4
), pp.
776
784
.
23.
Chen
,
J. J.
,
Han
,
X.
, and
Li
,
G. Y.
,
2013
, “
Asymmetric Lamb Wave Propagation in Phononic Crystal Slabs With Graded Grating
,”
J. Appl. Phys.
,
113
(
18
), p.
184506
.
24.
Li
,
J.
, and
Chen
,
J. J.
,
2016
, “
Unidirectional and Tunable Acoustic Diode Made by Asymmetric Double Layer Metallic Grating With Periodical Structure
,”
2016 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)
,
Piscataway, NJ
,
Oct. 21–24
.
25.
Chaunsali
,
R.
,
Li
,
F.
, and
Yang
,
F.
,
2016
, “
Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals
,”
Sci. Rep.
,
6
, p.
30662
.
26.
Wang
,
P.
,
Lu
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Topological Phononic Crystals With One-Way Elastic Edge Waves
,”
Phys. Rev. Lett.
,
115
(
10
), p.
104302
.
27.
Croenne
,
C.
,
Vasseur
,
J. O.
,
Bou Matar
,
O.
,
Ponge
,
M. F.
,
Deymier
,
P. A.
,
Hladky-Hennion
,
A. C.
, and
Dubus
,
B.
,
2017
, “
Brillouin Scattering-Like Effect and Non-Reciprocal Propagation of Elastic Waves due to Spatio-Temporal Modulation of Electrical Boundary Conditions in Piezoelectric Media
,”
Appl. Phys. Lett.,
110
(
6
), p.
061901
.
28.
Swinteck
,
N.
,
Matsuo
,
S.
,
Runge
,
K.
,
Vasseur
,
J. O.
,
Lucas
,
P.
, and
Deymier
,
P. A.
,
2015
, “
Bulk Elastic Waves With Unidirectional Backscattering-Immune Topological States in a Time-Dependent Superlattice
,”
J. Appl. Phys.
,
118
(
6
), p.
063103
.
29.
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2016
, “
Non-Reciprocal Elastic Wave Propagation in Spatiotemporal Periodic Structures
,”
New J. Phys.
,
18
(
8
), p.
083047
.
30.
Attarzadeh
,
M. A.
, and
Nouh
,
M.
,
2018
, “
Elastic Wave Propagation in Moving Phononic Crystals and Correlations With Stationary Spatiotemporally Modulated Systems
,”
AIP Adv.
,
8
(
10
), p.
105302
.
31.
Ansari
,
M. H.
,
Attarzadeh
,
M. A.
,
Nouh
,
M.
, and
Karami
,
M. A.
,
2018
, “
Application of Magnetoelastic Materials in Spatiotemporally Modulated Phononic Crystals for Nonreciprocal Wave Propagation
,”
Smart Mater. Struct.
,
27
(
1
), p.
015030
.
32.
Popa
,
B. I.
,
Zhai
,
Y.
, and
Kwon
,
H.
,
2018
, “
Acoustic Bianisotropic Metasurfaces for Broadband Non-Reciprocal Sound Transport
,”
J. Acoust. Soc. Am.
,
144
(
3
), pp.
1831
1831
.
33.
Attarzadeh
,
M. A.
,
Al Ba’ba’a
,
H.
, and
Nouh
,
M.
,
2018
, “
On the Wave Dispersion and Non-Reciprocal Power Flow in Space-Time Traveling Acoustic Metamaterials
,”
Appl. Acoust.
,
133
, pp.
210
214
.
34.
Attarzadeh
,
M. A.
, and
Nouh
,
M.
,
2018
, “
Non-Reciprocal Elastic Wave Propagation in 2D Phononic Membranes With Spatiotemporally Varying Material Properties
,”
J. Sound Vib.
,
422
, pp.
264
277
.
35.
Krokhin
,
A.
,
Neogi
,
A.
,
Walker
,
E.
, and
Bozhko
,
A.
,
2018
, “
Non-reciprocal Acoustic Transmission Through a Dissipative Phononic Crystal with Asymmetric Scatterer
,”
Health Monitoring of Structural and Biological Systems XII
,
Denver, CO
,
Apr. 3
.
36.
Zanjani
,
M. B.
,
Davoyan
,
A. R.
,
Mahmoud
,
A. M.
,
Engheta
,
N.
, and
Lukes
,
J. R.
,
2014
, “
One-Way Phonon Isolation in Acoustic Waveguides
,”
Appl. Phys. Lett.
,
104
(
8
), p.
081905
.
37.
Wang
,
Y.
,
Yousefzadeh
,
B.
,
Chen
,
H.
,
Nassar
,
H.
,
Huang
,
G.
, and
Daraio
,
C.
,
2018
, “
Observation of Nonreciprocal Wave Propagation in a Dynamic Phononic Lattice
,”
Phys. Rev. Lett.
,
121
(
19
), p.
194301
.
38.
Naizhi
,
Z.
, and
Shi
,
Y.
,
2010
, “
Experimental Research on Damage Detection of Large Thin Aluminum Plate Based on Lamb Wave
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
,
San Diego, CA
,
Feb
.
39.
Giurgiutiu
,
V.
,
2008
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,
Academic Press
,
Cambridge, MA
.
40.
ANSYS, Inc
. ansys 15.0, Help Electromagnetic Analysis Guide.
41.
Semblat
,
J. F.
,
Lenti
,
L.
, and
Gandomzadeh
,
A.
,
2011
, “
A Simple Multi-Directional Absorbing Layer Method to Simulate Elastic Wave Propagation in Unbounded Domains
,”
Int. J. Numer. Methods Eng.
,
85
(
12
), pp.
1543
1563
.
42.
Kwok
,
K. W.
,
Wang
,
B.
,
Chan
,
H.
, and
Choy
,
C. L.
,
2002
,
Self-Polarization in PZT Films
,
Taylor and Francis Inc
.,
London
.
43.
Ruzzene
,
F. R. A. M.
,
2012
,
Wave Propagation in Linear and Nonlinear Periodic Media: Analysis and Applications
,
Springer
,
New York
.
44.
Van Belle
,
L.
,
Deckers
,
E.
,
Claeys
,
C.
, and
Desmet
,
W.
,
2017
, “
Sound Transmission Loss of a Locally Resonant Metamaterial Using the Hybrid Wave Based—Finite Element Unit Cell Method
,”
11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials)
,
Piscataway, NJ
,
Aug. 27–Sept. 2
.
45.
Ang
,
L. Y. L.
,
Koh
,
Y. K.
, and
Lee
,
H. P.
,
2018
, “
Plate-Type Acoustic Metamaterial With Cavities Coupled via an Orifice for Enhanced Sound Transmission Loss
,”
Appl. Phys. Lett.
,
112
(
5
), p.
051903
.
46.
DeSalvo
,
G. J.
, and
Swanson
,
J. A.
,
1985
, “
ANSYS Engineering Analysis System User's
,”
Swanson Analysis Systems.
47.
Liu
,
W.
, and
Giurgiutiu
,
V.
,
2007
, “
Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring With Coupled-Filed Elements
,”
Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Apr. 10
.
48.
Yang
,
J.
,
2009
,
Special Topics in the Theory of Piezoelectricity
,
Springer
,
New York
.
49.
Song
,
F.
,
Huang
,
G. L.
,
Kim
,
J. H.
, and
Haran
,
S.
,
2008
, “
On the Study of Surface Wave Propagation in Concrete Structures Using a Piezoelectric Actuator/Sensor System
,”
Smart Mater. Struct.
,
17
(
5
), p.
055024
.
50.
Zhao
,
L.
,
Conlon
,
S. C.
, and
Semperlotti
,
F.
,
2014
, “
Broadband Energy Harvesting Using Acoustic Black Hole Structural Tailoring
,”
Smart Mater. Struct.
,
23
(
6
), p.
065021
.
51.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2014
, “
Predictive Modeling of Nonlinear Wave Propagation for Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,”
J. Intell. Mater. Syst. Struct.
,
25
(
4
), pp.
506
520
.
You do not currently have access to this content.