The nonlinear behavior of a piezoelectrically actuated clamped–clamped beam has been examined numerically while highlighting the nonsymmetric response of the system. The nonlinearly coupled electromechanical model of the piezoelectric beam system is developed employing the Bernoulli–Euler theory along with the piezoelectric stress–voltage equations. A general nonsymmetric configuration is considered with a piezoelectric patch partially covering the beam. The geometric nonlinearities of stretching type are taken into account for both the piezoelectric patch and the beam. Through use of the generalized Hamilton's principle, the nonlinearly coupled electromechanical equations of transverse and longitudinal motions of the piezoelectrically actuated beam are derived. A high-dimensional Galerkin scheme is utilized to recast the equations of partial differential type into ordinary differential type. For comparison and benchmark purposes, a three-dimensional finite element model is developed using abaqus/cae to verify the model developed in this study. It is shown that the response of the system is strongly nonsymmetric and that it is essential to retain many degrees-of-freedom to ensure converged results.

References

1.
Irschik
,
H.
,
2002
, “
A Review on Static and Dynamic Shape Control of Structures by Piezoelectric Actuation
,”
Eng. Struct.
,
24
(
1
), pp.
5
11
.
2.
Kumar
,
K. R.
, and
Narayanan
,
S.
,
2008
, “
Active Vibration Control of Beams With Optimal Placement of Piezoelectric Sensor/Actuator Pairs
,”
Smart Mater. Struct.
,
17
(
5
), p.
055008
.
3.
Raja
,
S.
,
Prathap
,
G.
, and
Sinha
,
P.
,
2002
, “
Active Vibration Control of Composite Sandwich Beams With Piezoelectric Extension-Bending and Shear Actuators
,”
Smart Mater. Struct.
,
11
(
1
), p.
63
.
4.
Vasques
,
C.
, and
Rodrigues
,
J. D.
,
2006
, “
Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies
,”
Comput. Struct.
,
84
(
22–23
), pp.
1402
1414
.
5.
Halim
,
M. A.
, and
Park
,
J. Y.
,
2014
, “
Theoretical Modeling and Analysis of Mechanical Impact Driven and Frequency Up-Converted Piezoelectric Energy Harvester for Low-Frequency and Wide-Bandwidth Operation
,”
Sens. Actuator. A Phys.
,
208
, pp.
56
65
.
6.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2017
, “
An Impact-Engaged Two-Degrees-of-Freedom Piezoelectric Energy Harvester for Wideband Operation
,”
Procedia Eng.
,
173
, pp.
1463
1470
.
7.
Huicong
,
L.
,
Chengkuo
,
L.
,
Takeshi
,
K.
,
Cho Jui
,
T.
, and
Chenggen
,
Q.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.
8.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-Up-Conversion Cantilever Stopper
,”
Sens. Actuator. A Phys.
,
186
, pp.
242
248
.
9.
Liu
,
S.
,
Cheng
,
Q.
,
Zhao
,
D.
, and
Feng
,
L.
,
2016
, “
Theoretical Modeling and Analysis of Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper
,”
Sens. Actuator. A Phys.
,
245
, pp.
97
105
.
10.
Hu
,
H.
,
Dai
,
L.
,
Chen
,
H.
,
Jiang
,
S.
,
Wang
,
H.
, and
Laude
,
V.
,
2017
, “
Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031008
.
11.
Wang
,
Q.
, and
Quek
,
S. T.
,
2000
, “
Flexural Vibration Analysis of Sandwich Beam Coupled With Piezoelectric Actuator
,”
Smart Mater. Struct.
,
9
(
1
), p.
103
.
12.
Lee
,
H.-C.
,
Park
,
J.-H.
,
Park
,
J.-Y.
,
Nam
,
H.-J.
, and
Bu
,
J.-U.
,
2005
, “
Design, Fabrication and RF Performances of Two Different Types of Piezoelectrically Actuated Ohmic MEMS Switches
,”
J. Micromech. Microeng.
,
15
(
11
), p.
2098
.
13.
Narita
,
F.
,
Shindo
,
Y.
, and
Mikami
,
M.
,
2005
, “
Analytical and Experimental Study of Nonlinear Bending Response and Domain Wall Motion in Piezoelectric Laminated Actuators Under AC Electric Fields
,”
Acta Mater.
,
53
(
17
), pp.
4523
4529
.
14.
Ghazavi
,
M.-R.
,
Rezazadeh
,
G.
, and
Azizi
,
S.
,
2010
, “
Pure Parametric Excitation of a Micro Cantilever Beam Actuated by Piezoelectric Layers
,”
Appl. Math. Model.
,
34
(
12
), pp.
4196
4207
.
15.
Bowen
,
C. R.
,
Giddings
,
P. F.
,
Salo
,
A. I.
, and
Kim
,
H. A.
,
2011
, “
Modeling and Characterization of Piezoelectrically Actuated Bistable Composites
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
9
), pp.
1737
1750
.
16.
Mahmoodi
,
S. N.
,
Jalili
,
N.
, and
Ahmadian
,
M.
,
2010
, “
Subharmonics Analysis of Nonlinear Flexural Vibrations of Piezoelectrically Actuated Microcantilevers
,”
Nonlinear Dyn.
,
59
(
3
), pp.
397
409
.
17.
Kumar
,
V.
,
Boley
,
J. W.
,
Yang
,
Y.
,
Ekowaluyo
,
H.
,
Miller
,
J. K.
,
Chiu
,
G. T.-C.
, and
Rhoads
,
J. F.
,
2011
, “
Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153510
.
18.
Xiao
,
Y.
,
Wang
,
B.
, and
Zhou
,
S.
,
2015
, “
Pull-In Voltage Analysis of Electrostatically Actuated MEMS With Piezoelectric Layers: A Size-Dependent Model
,”
Mech. Res. Commun.
,
66
, pp.
7
14
.
19.
He
,
Q.
, and
Daqaq
,
M. F.
,
2014
, “
Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise
,”
J. Sound Vib.
,
333
(
15
), pp.
3479
3489
.
20.
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Unified Nonlinear Electroelastic Dynamics of a Bimorph Piezoelectric Cantilever for Energy Harvesting, Sensing, and Actuation
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1727
1743
.
21.
Wang
,
W.
,
Cao
,
J.
,
Bowen
,
C. R.
,
Zhang
,
Y.
, and
Lin
,
J.
,
2018
, “
Nonlinear Dynamics and Performance Enhancement of Asymmetric Potential Bistable Energy Harvesters
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1183
1194
.
22.
Ghayesh
,
M. H.
,
2018
, “
Functionally Graded Microbeams: Simultaneous Presence of Perfection and Viscoelasticity
,”
Int. J. Mech. Sci.
,
140
, pp.
339
350
.
23.
Ghayesh
,
M. H.
,
2018
, “
Nonlinear Vibration Analysis of Axially Functionally Graded Shear-Deformable Tapered Beams
,”
Appl. Math. Model.
,
59
, pp.
583
596
.
24.
Ghayesh
,
M. H.
,
2018
, “
Dynamics of Functionally Graded Viscoelastic Microbeams
,”
Int. J. Eng. Sci.
,
124
, pp.
115
131
.
25.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Chaotic Motion of a Parametrically Excited Microbeam
,”
Int. J. Eng. Sci.
,
96
, pp.
34
45
.
26.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2016
, “
Size-Dependent Performance of Microgyroscopes
,”
Int. J. Eng. Sci.
,
100
, pp.
99
111
.
27.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
.
28.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Microscale Beam Based on the Modified Couple Stress Theory
,”
Compos. B Eng.
,
50
, pp.
318
324
.
29.
Farokhi
,
M. H.
,
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
.
30.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Nonlinear Dynamics of Microplates
,”
Int. J. Eng. Sci.
,
86
, pp.
60
73
.
31.
Farokhi
,
H.
and
Ghayesh
,
M. H.
,
2015
, “
Thermo-Mechanical Dynamics of Perfect and Imperfect Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
91
, pp.
12
33
.
32.
Farokhi
,
H.
and
Ghayesh
,
M. H.
,
2015
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
.
33.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Behaviour of Electrically Actuated MEMS Resonators
,”
Int. J. Eng. Sci.
,
71
, pp.
137
155
.
34.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhii
,
H.
,
2013
, “
Nonlinear Forced Vibrations of a Microbeam Based on the Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
63
, pp.
52
60
.
35.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Compos. B Eng.
,
60
, pp.
423
439
.
36.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
In-Plane and Out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
.
You do not currently have access to this content.