Abstract

The electro-mechanical (EM) admittance signals acquired from piezoelectric transducers (PZT) surface bonded to the host structure are often used for structural health monitoring (SHM). However, it is well known that the method is susceptible to contamination from environmental and operational conditions. This paper introduces a co-integration method to remove dynamic load effects from electro-mechanical admittance data. The proposed method is based on the concept of co-integration that is partially built on the analysis of the non-stationary behavior of time series. Instead of directly using admittance signatures of PZT for damage detection, the analysis of the co-integrated residual obtained from the co-integration procedure of EM admittance responses and the resonant peaks frequency of the real part of admittance (conductance) are chosen as co-integrated variables. The experiments of aluminum beam bolt loosening identification, which is under dynamic stress, were carried out to verify the effectiveness of the proposed method. The results showed that the method can isolate damage-sensitive features from stress variations, so as to successfully detect the existence of damage.

References

1.
Liang
,
C.
,
Sun
,
F. P.
, and
Rogers
,
C. A.
,
1996
, “
Electro-Mechanical Impedance Modeling of Active Material Systems
,”
Smart Mater. Struct.
,
5
(
2
), pp.
171
186
. 10.1088/0964-1726/5/2/006
2.
Liang
,
C.
,
Sun
,
F. P.
, and
Rogers
,
C. A.
,
1997
, “
Coupled Electro-Mechanical Analysis of Adaptive Material Systems Determination of the Actuator Power Consumption and System Energy Transfer
,”
J. Intell. Mater. Syst. Struct.
,
8
(
4
), pp.
335
343
. 10.1177/1045389X9700800406
3.
Sun
,
F. P.
,
Chaudhry
,
Z. A.
,
Rogers
,
C. A.
, and
Majmundar
,
M.
,
1995
, “
Automated Real-Time Structure Health Monitoring Via Signature Pattern Recognition
,”
Proceedings of the SPIE 2443, Smart Structures and Materials 1995: Smart Structures and Integrated Systems
,
San Diego, CA
,
May 8
, pp.
236
247
.
4.
Sohn
,
H.
,
Farrar
,
C. R.
, and
Inman
,
D. J.
,
2003
, “
Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward
,”
Shock Vib. Dig.
,
35
(
6
), pp.
451
463
. 10.1177/05831024030356001
5.
Wetherhold
,
R.
,
Messer
,
M.
, and
Patra
,
A.
,
2003
, “
Optimization of Directionally Attached Piezoelectric Actuators
,”
J. Eng. Mater. Technol.
,
125
(
2
), pp.
148
152
. 10.1115/1.1555653
6.
Soh
,
C. K.
, and
Lim
,
Y. Y.
,
2016
,
Structural Health Monitoring (SHM) in Aerospace Structures
, Vol.
15
,
Woodhead Publishing
,
Cambridge
, pp.
429
446
.
7.
Zuo
,
C.
,
Feng
,
X.
,
Zhang
,
Y.
,
Lu
,
L.
, and
Zhou
,
J.
,
2017
, “
Crack Detection in Pipelines Using Multiple Electromechanical Impedance Sensors
,”
Smart Mater. Struct.
,
26
(
10
), p.
104004
. 10.1088/1361-665X/aa7ef3
8.
Liu
,
P.
,
Wang
,
W.
,
Chen
,
Y.
,
Feng
,
X.
, and
Miao
,
L. X.
,
2017
, “
Concrete Damage Diagnosis Using Electromechanical Impedance Technique
,”
Constr. Build. Mater.
,
136
, pp.
450
455
. 10.1016/j.conbuildmat.2016.12.173
9.
Kuznetsov
,
S.
,
Pavelko
,
I.
,
Pavelko
,
V.
, and
Ozolinsh
,
I.
,
2014
, “
Bolt-Joint Structural Health Monitoring by the Method of Electromechanical Impedance
,”
Aircr. Eng. Aerosp. Technol.
,
86
(
3
), pp.
207
214
. 10.1108/AEAT-01-2013-0006
10.
Shull
,
P. J.
,
Roth
,
W.
, and
Giurgiutiu
,
V.
,
2015
, “
Adhesive Disbond Detection Using Piezoelectric Wafer Active Sensors
,”
Proceedings of the SPIE 9437, Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure
,
San Diego, CA
,
Mar. 8
, p.
94370S
.
11.
Na
,
W. S.
,
2018
, “
Low Cost Technique for Detecting Adhesive Debonding Damage of Glass Epoxy Composite Plate Using an Impedance Based Non-Destructive Testing Method
,”
Compos. Struct.
,
189
, pp.
99
106
. 10.1016/j.compstruct.2018.01.053
12.
Lim
,
Y. Y.
,
Kwong
,
K. Z.
,
Liew
,
W. Y. H.
, and
Soh
,
C. K.
,
2016
, “
Non-Destructive Concrete Strength Evaluation Using Smart Piezoelectric Transducer—A Comparative Study
,”
Smart Mater. Struct.
,
25
(
8
), p.
085021
. 10.1088/0964-1726/25/8/085021
13.
Wang
,
D.
,
Song
,
H.
, and
Zhu
,
H.
,
2014
, “
Embedded 3D Electromechanical Impedance Model for Strength Monitoring of Concrete Using a PZT Transducer
,”
Smart Mater. Struct.
,
23
(
11
), p.
115019
. 10.1088/0964-1726/23/11/115019
14.
Choi
,
S. K.
,
Tareen
,
N.
,
Kim
,
J.
,
Park
,
S.
, and
Park
,
I.
,
2018
, “
Real-Time Strength Monitoring for Concrete Structures Using EMI Technique Incorporating With Fuzzy Logic
,”
Appl. Sci.
,
8
(
1
), p.
8010075
. 10.3390/app8010075
15.
Ai
,
D.
,
Luo
,
H.
,
Wang
,
C.
, and
Zhu
,
H.
,
2018
, “
Monitoring of the Load-Induced RC Beam Structural Tension/Compression Stress and Damage Using Piezoelectric Transducers
,”
Eng. Struct.
,
154
, pp.
38
51
. 10.1016/j.engstruct.2017.10.046
16.
Wongi
,
N.
, and
Jongdae
,
B.
,
2018
, “
A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures
,”
Sensors
,
18
(
5
), p.
18051307
. 10.3390/s18051307
17.
Ong
,
C. W.
,
Yang
,
Y.
,
Naidu
,
A. S. K.
,
Lu
,
Y.
, and
Soh
,
C. K.
,
2002
, “
Application of the Electromechanical Impedance Method for the Identification of In-Situ Stress in Structures
,”
Proceedings of the SPIE 4935, Smart Structures, Devices, and Systems
,
Melbourne, Australia
,
Nov. 14
, pp.
503
514
.
18.
Annamdas
,
V.
,
Yang
,
Y.
, and
Soh
,
C.
,
2007
, “
Influence of Loading on the Electromechanical Admittance of Piezoceramic Transducers
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1888
1897
. 10.1088/0964-1726/16/5/045
19.
Lim
,
Y. Y.
, and
Soh
,
C. K.
,
2012
, “
Effect of Varying Axial Load Under Fixed Boundary Condition on Admittance Signatures of Electromechanical Impedance Technique
,”
J. Intell. Mater. Syst. Struct.
,
23
(
7
), pp.
815
826
. 10.1177/1045389X12437888
20.
Zhu
,
X.
,
Scalea
,
F. L. D.
, and
Fateh
,
M.
,
2014
, “
Temperature and Axial Stress Effects in Electromechanical-Impedance-Method-Based Structural Health Monitoring
,”
Proceedings of the SPIE 9064, Health Monitoring of Structural and Biological Systems
,
San Diego, CA
,
Mar. 28
, p.
90641O
.
21.
Yang
,
J.
,
Zhu
,
H.
,
Wang
,
D.
, and
Ai
,
D.
,
2015
, “
The Compensation Technique of Tensile Force Effect on the Electro-Mechanical Impedance Method for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
26
(
18
), pp.
2477
2488
. 10.1177/1045389X14568879
22.
Rabelo
,
D.
,
Finzi
,
N. R.
, and
Steffen
,
J. V.
,
2015
, “
Impedance-Based Structural Health Monitoring Incorporation Compesation of the Temperature Variation Effect
,”
23rd ABCM International Congress of Mechanical Engineering
,
Rio de Janeiro, RJ
,
Dec. 6–11
.
23.
Engle
,
R. F.
, and
Granger
,
C. W. J.
,
1987
, “
Co-integration and Error Correction: Representation, Estimation, and Testing
,”
Econometrica
,
55
(
2
), pp.
251
276
. 10.2307/1913236
24.
Cross
,
E. J.
,
Worden
,
K.
, and
Chen
,
Q.
,
2011
, “
Cointegration: A Novel Approach for the Removal of Environmental Trends in Structural Health Monitoring Data
,”
Proc. Royal Soc. A
,
467
(
2133
), pp.
2712
2732
. 10.1098/rspa.2011.0023
25.
Dao
,
P. B.
,
Staszewski
,
W. J.
,
Barszcz
,
T.
, and
Uhl
,
T.
,
2017
, “
Condition Monitoring and Fault Detection in Wind Turbines Based on Cointegration Analysis of SCADA Data
,”
Renewable Energy
,
116
(
B
), pp.
107
122
. 10.1016/j.renene.2017.06.089
26.
Dao
,
P. B.
, and
Staszewski
,
W. J.
,
2013
, “
Cointegration Approach for Temperature Effect Compensation in Lamb-Wave-Based Damage Detection
,”
Smart Mater. Struct.
,
22
(
9
), p.
095002
. 10.1088/0964-1726/22/9/095002
27.
Shi
,
H.
,
Worden
,
K.
, and
Cross
,
E. J.
,
2018
, “
A Regime-Switching Cointegration Approach for Removing Environmental and Operational Variations in Structural Health Monitoring
,”
Mech. Syst. Sig. Process.
,
103
, pp.
381
397
. 10.1016/j.ymssp.2017.10.013
28.
Zhou
,
S. W.
,
Liang
,
C.
, and
Rogers
,
C. A.
,
1995
, “
Integration and Design of Piezoceramic Elements in Intelligent Structures
,”
J. Intell. Mater. Syst. Struct.
,
8
(
4
), pp.
363
373
. 10.1177/1045389X9700800409
29.
Xu
,
Y. G.
, and
Liu
,
G. R.
,
2002
, “
A Modified Electro-Mechanical Impedance Model of Piezoelectric Actuator-Sensors for Debonding Detection of Composite Patches
,”
J. Intell. Mater. Syst. Struct.
,
13
(
13
), pp.
389
396
. 10.1177/104538902761696733
30.
Thomson
,
W. T.
,
2005
,
Theory of Vibration with Applications
, 5th ed.,
Tsinghua University Press
,
Beijing
.
31.
Johansen
,
S.
,
1988
, “
The Statistical Analysis of Cointegration Vectors
,”
J. Econ. Dyn. Control
,
12
(
2
), pp.
231
254
. 10.1016/0165-1889(88)90041-3
32.
Lin
,
B.
, and
Giurgiutiu
,
V.
,
2006
, “
On the Modeling of Piezoelectric Wafer Active Sensor Impedance Analysis for Structural Health Monitoring
,”
Proceedings of the SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
,
San Diego, CA
,
Apr. 5
, pp.
82
90
.
33.
Peairs
,
D. M.
,
Park
,
G.
, and
Inman
,
D. J.
,
2002
, “
Reducing the Cost of Impedance-Based Structural Health Monitoring
,”
Proceedings of the SPIE 4702, Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems
,
San Diego, CA
,
June 11
, pp.
701
709
.
34.
Islam
,
M. M.
, and
Huang
,
H.
,
2014
, “
Understanding the Effects of Adhesive Layer on the Electromechanical Impedance (EMI) of Bonded Piezoelectric Wafer Transducer
,”
Smart Mater. Struct.
,
23
(
12
), p.
125037
. 10.1088/0964-1726/23/12/125037
You do not currently have access to this content.