Abstract

An oblong ring-type structure is composed by two straight segments (length L) and two semicircular segments (radius R). It can be used to generate traveling waves, being applied to build linear piezoelectric motors and linear conveyor systems. The traveling waves to such applications occur at specific frequencies, generated by simultaneous symmetric and antisymmetric flexural vibration modes which, in general, have distinct natural frequencies. However, for specific designs, they may coincide or be very close. This may be achieved by finding the appropriate L/R ratio. For preliminary design, an analytical model is very desirable, due to its computational efficiency and the absence of a computational automatic identification of symmetric and antisymmetric flexural vibration modes among numerical solutions. Therefore, the objective of this work is to propose an analytical and practical model to determine classes of vibration modes of interest for producing traveling waves in oblong ring-type structures, being employed for conceptual design such that the L/R ratio is determined in an efficient way. The oblong ring is considered as a beam-like structure composed by straight and curved segments, employing Timoshenko and Euler–Bernoulli kinematic assumptions. A design method is proposed by solving sequentially and systematically distinct geometric proposals of oblong ring-type designs and, for each one, evaluating the candidates to produce the flexural traveling waves. Later, the strong-candidates are analyzed by finite element models to test the quality of the design with less assumptions. We show that the methodology provides convenient results as a design method for oblong ring-type structures.

References

1.
Kawamura
,
A.
, and
Takeda
,
N.
,
1991
, “
Linear Ultrasonic Piezoelectric Actuator
,”
IEEE Trans. Ind. Appl.
,
27
(
1
), pp.
23
26
. 10.1109/28.67527
2.
Loh
,
B.-G.
, and
Ro
,
P.
,
2000
, “
An Object Transport System Using Flexural Ultrasonic Progressive Waves Generated by Two-Mode Excitation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
4
), pp.
994
999
. 10.1109/58.852083
3.
Hernandez
,
C.
,
Bernard
,
Y.
, and
Razek
,
A.
,
2013
, “
Design and Manufacturing of a Piezoelectric Traveling-Wave Pumping Device
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
9
), pp.
1949
1956
. 10.1109/TUFFC.2013.2779
4.
Hariri
,
H.
,
Bernard
,
Y.
, and
Razek
,
A.
,
2014
, “
A Traveling Wave Piezoelectric Beam Robot
,”
Smart Mater. Struct.
,
23
(
025013
), pp.
2
8
. 10.1088/0964-1726/23/2/025013
5.
Thomas
,
G. P. L.
,
Andrade
,
M. A. B.
,
Adamowski
,
J. C.
, and
Silva
,
E. C. N.
,
2017
, “
Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
64
(
5
), pp.
839
846
. 10.1109/TUFFC.2017.2673244
6.
Seemann
,
W.
,
1996
, “
A Linear Ultrasonic Traveling Wave Motor of the Ring Type
,”
Smart Mater. Struct.
,
5
(
3
), p.
361
. 10.1088/0964-1726/5/3/015
7.
Liu
,
X.
,
Shi
,
D.
,
Civet
,
Y.
, and
Perriard
,
Y.
,
2013
, “
Modelling and Optimal Design of a Ring-Type Structure for the Generation of a Traveling Wave
,”
International Conference on Electrical Machines and Systems
,
Busan, South Korea
,
Oct. 26–29
, pp.
1286
1291
.
8.
Gallego-Juarez
,
J. A.
,
1989
, “
Piezoelectric Ceramics and Ultrasonic Transducers
,”
J. Phys. E: Sci. Instrum.
,
22
(
10
), p.
804
. 10.1088/0022-3735/22/10/001
9.
Manceau
,
J.-F.
, and
Bastien
,
F.
,
1995
, “
Production of a Quasi-Traveling Wave in a Silicon Rectangular Plate Using Single Phase Drive
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
1
), pp.
59
65
. 10.1109/58.368312
10.
Li
,
J.
,
Liu
,
S.
,
Zhou
,
N.
,
Yu
,
A.
,
Cui
,
Y.
, and
Chen
,
P.
,
2017
, “
A Traveling Wave Ultrasonic Motor With a Metal/Polymer-Matrix Material Compound Stator
,”
Smart Mater. Struct.
,
27
(
1
), p.
015027
. 10.1088/1361-665X/aa9cc4
11.
Frayssignes
,
H.
, and
Briot
,
R.
,
2003
, “
Traveling Wave Ultrasonic Motor: Coupling Effects in Free Stator
,”
Ultrasonics
,
41
(
2
), pp.
89
95
. 10.1016/S0041-624X(02)00437-7
12.
Dong
,
Z.
,
Yang
,
M.
,
Chen
,
Z.
,
Xu
,
L.
,
Meng
,
F.
, and
Ou
,
W.
,
2016
, “
Design and Performance Analysis of a Rotary Traveling Wave Ultrasonic Motor With Double Vibrators
,”
Ultrasonics
,
71
, pp.
134
141
. 10.1016/j.ultras.2016.06.004
13.
Hagedorn
,
P.
, and
Wallaschek
,
J.
,
1992
, “
Travelling Wave Ultrasonic Motors, Part I: Working Principle and Mathematical Modelling of the Stator
,”
J. Sound Vib.
,
155
(
1
), pp.
31
46
. 10.1016/0022-460X(92)90643-C
14.
Sun
,
S.
,
Liu
,
L.
, and
Cao
,
D.
,
2018
, “
Nonlinear Travelling Wave Vibrations of a Rotating Thin Cylindrical Shell
,”
J. Sound Vib.
,
431
, pp.
122
136
. 10.1016/j.jsv.2018.05.042
15.
Yuan
,
S.
,
Ye
,
K.
,
Xiao
,
C.
,
Williams
,
F. W.
, and
Kennedy
,
D.
,
2007
, “
Exact Dynamic Stiffness Method for Non-Uniform Timoshenko Beam Vibrations and Bernoulli–Euler Column Buckling
,”
J. Sound Vib.
,
303
(
3–5
), pp.
526
537
. 10.1016/j.jsv.2007.01.036
16.
Banerjee
,
J. R.
, and
Gunawardana
,
W. D.
,
2007
, “
Dynamic Stiffness Matrix Development and Free Vibration Analysis of a Moving Beam
,”
J. Sound Vib.
,
303
(
1–2
), pp.
135
143
. 10.1016/j.jsv.2006.12.020
17.
Banerjee
,
J. R.
, and
Ananthapuvirajah
,
A.
,
2019
, “
An Exact Dynamic Stiffness Matrix for a Beam Incorporating Rayleigh–Love and Timoshenko Theories
,”
Int. J. Mech. Sci.
,
150
(
1–2
), pp.
337
347
. 10.1016/j.ijmecsci.2018.10.012
18.
ansys, inc
.,
2000
,
Ansys Reference Manual, Release 5.6
,
Canonsburg, PA
.
19.
Gay Neto
,
A.
,
Martins
,
C.
, and
Pimenta
,
P.
,
2014
, “
Static Analysis of Offshore Risers With a Geometrically-Exact 3D Beam Model Subjected to Unilateral Contact
,”
Comput. Mech.
,
53
(
1
), pp.
125
145
. 10.1007/s00466-013-0897-9
20.
Gay Neto
,
A.
,
2016
, “
Dynamics of Offshore Risers Using a Geometrically-Exact Beam Model With Hydrodynamic Loads and Contact With the Seabed
,”
Eng. Struct.
,
53
(
15
), pp.
438
454
. 10.1016/j.engstruct.2016.07.005
21.
Gay Neto
,
A.
,
2018
,
giraffe User’s Manual
.
22.
Bucalem
,
M.
, and
Bathe
,
K.
,
2011
,
The Mechanics of Solids and Structures—Hierarchical Modeling and the Finite Element Solution
,
Springer
,
New York
.
23.
Chidamparam
,
P.
, and
Leissa
,
A.
,
1993
, “
Vibrations of Planar Curved Beams, Rings, and Arches
,”
ASME Appl. Mech. Rev.
,
46
(
9
), pp.
467
483
. 10.1115/1.3120374
You do not currently have access to this content.