Abstract

An adaptive method for suppressing mechanical vibration of multiple frequencies is investigated. The adaptive controller is reinforced with saturation alleviator to improve the convergence rate and performance of the adaptive algorithm. Tracking filters are used to extract harmonics of fluctuating frequencies and the anti-saturation unit works in series with the tracking filters to give constrained harmonic output. As a result, the controller is insensitive to abnormally large input that would otherwise induce saturation in actuators. A dynamic model is built for vibration suppression simulation and the numerical results indicate that the adaptive algorithm is effective in cases of multiple fluctuating frequencies and output saturation. Experiments were also conducted to test the performance of the adaptive method. Excitation with oscillating frequencies was applied, and the results have demonstrated that the harmonics can be suppressed effectively with the adaptive method.

References

1.
Li
,
Y.
,
He
,
L.
,
Shuai
,
C.
, and
Wang
,
F.
,
2016
, “
Time-Domain Filtered-X-Newton Narrowband Algorithms for Active Isolation of Frequency-Fluctuating Vibration
,”
J. Sound Vib.
,
367
, pp.
1
21
. 10.1016/j.jsv.2015.12.019
2.
Guo
,
Y.
,
Li
,
W.
,
Yu
,
S.
,
Han
,
X.
,
Yuan
,
Y.
,
Wang
,
Z.
, and
Ma
,
X.
,
2017
, “
Diesel Engine Torsional Vibration Control Coupling With Speed Control System
,”
Mech. Syst. Signal Process.
,
94
, pp.
1
13
. 10.1016/j.ymssp.2017.01.017
3.
Daley
,
S.
, and
Zazas
,
I.
,
2012
, “
A Recursive Least Squares Based Control Algorithm for the Suppression of Tonal Disturbances
,”
J. Sound Vib.
,
331
(
6
), pp.
1270
1290
. 10.1016/j.jsv.2011.11.007
4.
Orivuori
,
J.
,
Zazas
,
I.
, and
Daley
,
S.
,
2012
, “
Active Control of Frequency Varying Disturbances in a Diesel Engine
,”
Contr. Eng. Pract.
,
20
(
11
), pp.
1206
1219
. 10.1016/j.conengprac.2012.06.010
5.
Scribner
,
K. B.
,
Sievers
,
L. A.
, and
von Flotow
,
A. H.
,
1993
, “
Active Narrow-Band Vibration Isolation of Machinery Noise From Resonant Substructures
,”
J. Sound Vib.
,
167
(
1
), pp.
17
40
. 10.1006/jsvi.1993.1319
6.
Elbeheiry
,
E. M.
, and
Karnopp
,
D. C.
,
1996
, “
Optimal Control of Vehicle Random Vibration With Constrained Suspension Deflection
,”
J. Sound Vib.
,
189
(
5
), pp.
547
564
. 10.1006/jsvi.1996.0036
7.
Bang
,
J. S.
,
Shim
,
H.
,
Park
,
S. K.
, and
Seo
,
J. H.
,
2010
, “
Robust Tracking and Vibration Suppression for a Two-Inertia System by Combining Backstepping Approach with Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
57
(
9
), pp.
3197
3206
. 10.1109/TIE.2009.2038398
8.
Battaini
,
M.
,
Casciati
,
F.
, and
Faravelli
,
L.
,
1998
, “
Fuzzy Control of Structural Vibration. An Active Mass System Driven by a Fuzzy Controller
,”
Earthq. Eng. Struct. Dyn.
,
27
(
11
), pp.
1267
1276
. 10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D
9.
Zhao
,
F.
,
Ge
,
S. S.
,
Tu
,
F.
,
Qin
,
Y.
, and
Dong
,
M.
,
2016
, “
Adaptive Neural Network Control for Active Suspension System With Actuator Saturation
,”
IET Control Theory Appl.
,
10
(
14
), pp.
1696
1705
. 10.1049/iet-cta.2015.1317
10.
Wang
,
C.
,
Xie
,
X.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2016
, “
Investigation on Active Vibration Isolation of a Stewart Platform With Piezoelectric Actuators
,”
J. Sound Vib.
,
383
, pp.
1
19
. 10.1016/j.jsv.2016.07.021
11.
Widrow
,
B.
,
Glover
,
J. R.
,
McCool
,
J. M.
,
Kaunitz
,
J.
,
Williams
,
C. S.
,
Hearn
,
R. H.
,
Zeidler
,
J. R.
,
Dong
,
E.
, and
Goodlin
,
R. C.
,
1975
, “
Adaptive Noise Cancelling: Principles and Applications
,”
Proc. IEEE
,
63
(
12
), pp.
1692
1716
. 10.1109/PROC.1975.10036
12.
Morgan
,
D.
,
1980
, “
An Analysis of Multiple Correlation Cancellation Loops With a Filter in the Auxiliary Path
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
28
(
4
), pp.
454
467
. 10.1109/TASSP.1980.1163430
13.
Elliott
,
S.
,
Stothers
,
I.
, and
Nelson
,
P.
,
1987
, “
A Multiple Error LMS Algorithm and Its Application to the Active Control of Sound and Vibration
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
35
(
10
), pp.
1423
1434
. 10.1109/TASSP.1987.1165044
14.
Cabell
,
R.
,
Palumbo
,
D.
, and
Vipperman
,
J.
,
2001
, “
A Principal Component Feedforward Algorithm for Active Noise Control: Flight Test Results
,”
IEEE Trans. Contr. Syst. Technol.
,
9
(
1
), pp.
76
83
. 10.1109/87.896748
15.
Chang
,
D. C.
, and
Chu
,
F. T.
,
2014
, “
Feedforward Active Noise Control With a New Variable Tap-Length and Step-Size Filtered-x LMS Algorithm
,”
IEEE-ACM Trans. Audio Speech Lang. Process.
,
22
(
2
), pp.
542
555
. 10.1109/TASLP.2013.2297016
16.
Kim
,
S.
, and
Park
,
Y.
,
1999
, “
Active Control of Multi-Tonal Noise With Reference Generator Based on On-Line Frequency Estimation
,”
J. Sound Vib.
,
227
(
3
), pp.
647
666
. 10.1006/jsvi.1999.2383
17.
Zhang
,
Z.
,
Hu
,
F.
, and
Hua
,
H.
,
2010
, “
Simulation and Experiment on Active Vibration Isolation With an Adaptive Method
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Marit. Environ.
,
224
(
3
), pp.
225
238
. 10.1243/14750902JEME184
18.
Håkansson
,
L.
,
Claesson
,
I.
, and
Sturesson
,
P. O. H.
,
1998
, “
Adaptive Feedback Control of Machine-Tool Vibration Based on the Filtered-X LMS-Algorithm
,”
J. Low Freq. Noise Vib. Active Contr.
,
17
(
4
), pp.
199
213
. 10.1177/026309239801700404
19.
Jafari
,
S.
,
Ioannou
,
P.
, and
Rudd
,
L.
,
2017
, “
Adaptive Feedback Suppression of Unknown Periodic Components of Acoustic Noises With Time-Varying Characteristics
,”
J. Vib. Contr.
,
23
(
4
), pp.
526
538
. 10.1177/1077546315581249
20.
Bai
,
M. R.
, and
Wu
,
T.
,
1998
, “
Simulations of an Internal Model-Based Active Noise Control System for Suppressing Periodic Disturbances
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
111
116
. 10.1115/1.2893792
21.
Landau
,
I. D.
,
Constantinescu
,
A.
, and
Rey
,
D.
,
2005
, “
Adaptive Narrow Band Disturbance Rejection Applied to an Active Suspension—An Internal Model Principle Approach
,”
Automatica
,
41
(
4
), pp.
563
574
. 10.1016/j.automatica.2004.08.022
22.
Chandrasekar
,
J.
,
Liu
,
L.
,
Patt
,
D.
,
Friedmann
,
P. P.
, and
Bernstein
,
D. S.
,
2006
, “
Adaptive Harmonic Steady-State Control for Disturbance Rejection
,”
IEEE Trans. Contr. Syst. Technol.
,
14
(
6
), pp.
993
1007
. 10.1109/TCST.2006.880185
23.
Duviella
,
E.
,
Puig
,
V.
,
Charbonnaud
,
P.
,
Escobet
,
T.
,
Carrillo
,
F. J.
, and
Quevedo
,
J.
,
2010
, “
Supervised Gain-Scheduling Multimodel Versus Linear Parameter Varying Internal Model Control of Open-Channel Systems for Large Operating Conditions
,”
J. Irrigat. Drain. Eng.
,
136
(
8
), pp.
543
552
. 10.1061/(ASCE)IR.1943-4774.0000219
24.
Zhang
,
Z.
,
Rustighi
,
E.
,
Chen
,
Y.
, and
Hua
,
H.
,
2012
, “
Active Control of the Longitudinal-Lateral Vibration of a Shaft-Plate Coupled System
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061002
. 10.1115/1.4006647
25.
Fedele
,
G.
, and
Ferrise
,
A.
,
2014
, “
Periodic Disturbance Rejection With Unknown Frequency and Unknown Plant Structure
,”
J. Franklin Inst.
,
351
(
2
), pp.
1074
1092
. 10.1016/j.jfranklin.2013.10.013
26.
Kamaldar
,
M.
, and
Hoagg
,
J. B.
,
2017
, “
Adaptive Harmonic Steady-State Control for Rejection of Sinusoidal Disturbances Acting on a Completely Unknown System
,”
Int. J. Adapt. Contr. Signal Process.
,
31
(
9
), pp.
1308
1326
. 10.1002/acs.2766
27.
Pigg
,
S.
, and
Bodson
,
M.
,
2010
, “
Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants
,”
IEEE Trans. Contr. Syst. Technol.
,
18
(
4
), pp.
822
836
. 10.1109/TCST.2009.2029237
28.
Sastry
,
S.
, and
Bodson
,
M.
,
1989
,
Adaptive Control: Stability, Convergence and Robustness
,
Prentice Hall
,
Englewood Cliffs, New Jersey
.
29.
Zhang
,
Z.
,
Hu
,
F.
, and
Wang
,
J.
,
2010
, “
On Saturation Suppression in Adaptive Vibration Control
,”
J. Sound Vib.
,
329
(
9
), pp.
1209
1214
. 10.1016/j.jsv.2009.11.027
30.
Cao
,
Z.
,
1989
,
Vibration Theory of Plates and Shells
,
China Railway Press
,
Beijing
.
You do not currently have access to this content.