Abstract

Significant amplitude-independent and passive non-reciprocal wave motion can be achieved in a one-dimensional (1D) discrete chain of masses and springs with bilinear elastic stiffness. Some fundamental asymmetric spatial modulations of the bilinear spring stiffness are first examined for their non-reciprocal properties. These are combined as building blocks into more complex configurations with the objective of maximizing non-reciprocal wave behavior. The non-reciprocal property is demonstrated by the significant difference between the transmitted pulse displacement amplitudes and energies for incidence from opposite directions. Extreme non-reciprocity is realized when almost-zero transmission is achieved for the propagation from one direction with a noticeable transmitted pulse for incidence from the other. These models provide the basis for a class of simple 1D non-reciprocal designs and can serve as the building blocks for more complex and higher dimensional non-reciprocal wave systems.

References

1.
Caloz
,
C.
,
Alù
,
A.
,
Tretyakov
,
S.
,
Sounas
,
D.
,
Achouri
,
K.
, and
Deck-Léger
,
Z.-L.
,
2018
, “
Electromagnetic Nonreciprocity
,”
Phys. Rev. Appl.
,
10
(
4
), p.
047001
. 10.1103/PhysRevApplied.10.047001
2.
Wang
,
P.
,
Lu
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Topological Phononic Crystals With One-Way Elastic Edge Waves
,”
Phys. Rev. Lett.
,
115
(
10
), p.
104302
. 10.1103/PhysRevLett.115.104302
3.
Nassar
,
H.
,
Xu
,
X.
,
Norris
,
A.
, and
Huang
,
G.
,
2017
, “
Modulated Phononic Crystals: Non-Reciprocal Wave Propagation and Willis Materials
,”
J. Mech. Phys. Solids
,
101
(
C
), pp.
10
29
. 10.1016/j.jmps.2017.01.010
4.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A. N.
, and
Huang
,
G. L.
,
2018
, “
Quantization of Band Tilting in Modulated Phononic Crystals
,”
Phys. Rev. B
,
97
(
1
), p.
014305
. 10.1103/PhysRevB.97.014305
5.
Liang
,
B.
,
Yuan
,
B.
, and
Cheng
,
J.-C.
,
2009
, “
Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems
,”
Phys. Rev. Lett.
,
103
(
10
), p.
104301
. 10.1103/PhysRevLett.103.104301
6.
Liang
,
B.
,
Guo
,
X. S.
,
Tu
,
J.
,
Zhang
,
D.
, and
Cheng
,
J. C.
,
2010
, “
An Acoustic Rectifier
,”
Nat. Mater.
,
9
(
12
), pp.
989
992
. 10.1038/nmat2881
7.
Fronk
,
M. D.
,
Tawfick
,
S.
,
Daraio
,
C.
,
Li
,
S.
,
Vakakis
,
A.
, and
Leamy
,
M. J.
,
2019
, “
Acoustic Non-Reciprocity in Lattices With Nonlinearity, Internal Hierarchy, and Asymmetry: Computational Study
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051011
. 10.1115/1.4043783
8.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Li
,
S.
,
Leamy
,
M.
, and
Vakakis
,
A. F.
,
2018
, “
Nonreciprocity in the Dynamics of Coupled Oscillators With Nonlinearity, Asymmetry, and Scale Hierarchy
,”
Phys. Rev. E
,
97
(
1
), p.
012219
. 10.1103/PhysRevE.97.012219
9.
Bunyan
,
J.
,
Moore
,
K. J.
,
Mojahed
,
A.
,
Fronk
,
M. D.
,
Leamy
,
M.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2018
, “
Acoustic Nonreciprocity in a Lattice Incorporating Nonlinearity, Asymmetry, and Internal Scale Hierarchy: Experimental Study
,”
Phys. Rev. E
,
97
(
5
), p.
052211
. 10.1103/PhysRevE.97.052211
10.
Luo
,
B.
,
Gao
,
S.
,
Liu
,
J.
,
Mao
,
Y.
,
Li
,
Y.
, and
Liu
,
X.
,
2018
, “
Non-Reciprocal Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
AIP Adv.
,
8
(
1
), p.
015113
. 10.1063/1.5010990
11.
Wallen
,
S. P.
, and
Haberman
,
M. R.
,
2019
, “
Nonreciprocal Wave Phenomena in Spring-Mass Chains With Effective Stiffness Modulation Induced by Geometric Nonlinearity
,”
Phys. Rev. E
,
99
(
1
), p.
013001
. 10.1103/PhysRevE.99.013001
12.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
. 10.1115/1.4000775
13.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
. 10.1016/j.wavemoti.2011.12.005
14.
Shaw
,
S.
, and
Holmes
,
P.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
. 10.1016/0022-460X(83)90407-8
15.
Scalerandi
,
M.
,
Agostini
,
V.
,
Delsanto
,
P. P.
,
Abeele
,
K. V. D.
, and
Johnson
,
P. A.
,
2003
, “
Local Interaction Simulation Approach to Modelling Nonclassical, Nonlinear Elastic Behavior in Solids
,”
J. Acoust. Soc. Am.
,
113
(
6
), p.
3049
. 10.1121/1.1570440
16.
Kuznetsova
,
M. S.
,
Pasternak
,
E.
, and
Dyskin
,
A. V.
,
2017
, “
Analysis of Wave Propagation in a Discrete Chain of Bilinear Oscillators
,”
Nonlinear Processes Geophys.
,
24
(
3
), pp.
455
460
. 10.5194/npg-24-455-2017
17.
Benveniste
,
Y.
,
1980
, “
One-Dimensional Wave Propagation in Materials With Different Moduli in Tension and Compression
,”
Int. J. Eng. Sci.
,
18
(
6
), pp.
815
827
. 10.1016/0020-7225(80)90028-2
18.
Maslov
,
V.
, and
Mosolov
,
P.
,
1985
, “
General Theory of the Solutions of the Equations of Motion of an Elastic Medium of Different Moduli
,”
J. Appl. Math. Mech.
,
49
(
3
), pp.
322
336
. 10.1016/0021-8928(85)90031-0
19.
Nazarov
,
V. E.
, and
Ostrovsky
,
L. A.
,
1990
, “
Elastic Waves in Media With Strong Acoustic Nonlinearity
,”
Sov. Phys. Acoust.
,
36
(
1
), pp.
106
110
.
20.
Ostrovsky
,
L. A.
,
1991
, “
Wave Processes in Media With Strong Acoustic Nonlinearity
,”
J. Acoust. Soc. Am.
,
90
(
6
), pp.
3332
3337
. 10.1121/1.401444
21.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1992
, “
Wave Propagation in Linear, Bilinear and Trilinear Elastic Bars
,”
Wave Motion
,
15
(
1
), pp.
77
92
. 10.1016/0165-2125(92)90006-N
22.
Gavrilov
,
S.
, and
Herman
,
G.
,
2012
, “
Wave Propagation in a Semi-Infinite Heteromodular Elastic Bar Subjected to a Harmonic Loading
,”
J. Sound Vib.
,
331
(
20
), pp.
4464
4480
. 10.1016/j.jsv.2012.05.022
23.
Nazarov
,
V. E.
,
Radostin
,
A. V.
, and
Kiyashko
,
S. B.
,
2015
, “
Self-Similar Acoustic Waves in Homogeneous Media With Different-Modulus Nonlinearity and Relaxation
,”
Radiophys. Quantum Electron.
,
58
(
2
), pp.
124
131
. 10.1007/s11141-015-9587-0
24.
Rudenko
,
O. V.
,
2016
, “
Modular Solitons
,”
Dokl. Math.
,
94
(
3
), pp.
708
711
. 10.1134/S1064562416060296
25.
Rudenko
,
O. V.
,
2016
, “
Equation Admitting Linearization and Describing Waves in Dissipative Media With Modular, Quadratic, and Quadratically Cubic Nonlinearities
,”
Dokl. Math.
,
94
(
3
), pp.
703
707
. 10.1134/S1064562416060053
26.
Nazarov
,
V. E.
,
Kiyashko
,
S. B.
, and
Radostin
,
A. V.
,
2016
, “
The Wave Processes in Micro-Inhomogeneous Media With Different-Modulus Nonlinearity and Relaxation
,”
Radiophys. Quantum Electron.
,
59
(
3
), pp.
246
256
. 10.1007/s11141-016-9693-7
27.
Naugolnykh
,
K.
, and
Ostrovsky
,
L.
,
1998
,
Nonlinear Wave Processes in Acoustics
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.