Abstract

The dynamic response of fractionally damped viscoelastic plates subjected to a moving point load is investigated. In order to capture the viscoelastic dynamic behavior more accurately, the material is modeled using the fractionally damped Kelvin–Voigt model (rather than the integer-type viscoelastic model). The Riemann–Liouville fractional derivative of order 0 < α ≤ 1 is applied. Galerkin's method and Newton–Raphson technique are used to evaluate the natural frequencies and corresponding damping coefficients. The structure is subject to a moving point load, traveling at different speeds. The modal summation technique is applied to generate the dynamic response of the plate. The influence of the order of the fractional derivative on the free and transient vibrations is studied for different velocities of the moving load. The results are compared with those using the classical integer-type Kelvin–Voigt viscoelastic model. The results show that an increase in the order of the fractional derivative causes a significant decrease in the maximum dynamic amplification factor, especially in the “dynamic zone” of the normalized sweep time. The dynamic behavior of the plate is verified with ansys.

References

1.
Newman
,
M. K.
,
1959
, “
Viscous Damping in Flexural Vibrations of Bars
,”
ASME J. Appl. Mech.
,
26
, pp.
367
376
. 10.1115/1.3643972
2.
Gürgöze
,
M.
,
1987
, “
Parametric Vibrations of a Viscoelastic Beam (Maxwell Model) Under Steady Axial Load and Transverse Displacement Excitation at One End
,”
J. Sound Vib.
,
115
(
2
), pp.
329
338
. 10.1016/0022-460X(87)90476-7
3.
Mahmoodi
,
S. N.
,
Khadem
,
S. E.
, and
Kokabi
,
M.
,
2007
, “
Non-Linear Free Vibrations of Kelvin–Voigt Visco-Elastic Beams
,”
Int. J. Mech. Sci.
,
49
(
6
), pp.
722
732
. 10.1016/j.ijmecsci.2006.10.005
4.
Mainardi
,
F.
, and
Spada
,
G.
,
2011
, “
Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
133
160
. 10.1140/epjst/e2011-01387-1
5.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
. 10.1122/1.549724
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
. 10.1122/1.549887
7.
Meral
,
F. C.
,
Royston
,
T. J.
, and
Magin
,
R.
,
2010
, “
Fractional Calculus in Viscoelasticity: An Experimental Study
,”
Commun. Nonlinear Sci.
,
15
(
4
), pp.
939
945
. 10.1016/j.cnsns.2009.05.004
8.
Adolfsson
,
K.
,
Enelund
,
M.
, and
Olsson
,
P.
,
2005
, “
On the Fractional Order Model of Viscoelasticity
,”
Mech. Time-Depend. Mater.
,
9
(
1
), pp.
15
34
. 10.1007/s11043-005-3442-1
9.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
. 10.1016/j.mechmat.2011.08.016
10.
Ramirez
,
L. E. S.
, and
Coimbra
,
C. F. M.
,
2007
, “
A Variable Order Constitutive Relation for Viscoelasticity
,”
Ann. Phys.
,
16
(
7–8
), pp.
543
552
. 10.1002/andp.200710246
11.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
,
1995
, “
Kelvin-Voigt Versus Fractional Derivative Model as Constitutive Relations for Viscoelastic Materials
,”
AIAA J.
,
33
(
3
), pp.
547
550
. 10.2514/3.12471
12.
Sunny
,
M. R.
,
Kapania
,
R. K.
,
Moffitt
,
R. D.
,
Mishra
,
A.
, and
Goulbourne
,
N.
,
2010
, “
A Modified Fractional Calculus Approach to Model Hysteresis
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031004
. 10.1115/1.4000413
13.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q Is Almost Frequency Independent
,”
Geophys. J. Int.
,
13
(
5
), pp.
529
539
. 10.1111/j.1365-246X.1967.tb02303.x
14.
Enelund
,
M.
, and
Olsson
,
P.
,
1999
, “
Damping Described by Fading Memory—Analysis and Application to Fractional Derivative Models
,”
Int. J. Solids Struct.
,
36
(
7
), pp.
939
970
. 10.1016/S0020-7683(97)00339-9
15.
Caputo
,
M.
, and
Mainardi
,
F.
,
1971
, “
A New Dissipation Model Based on Memory Mechanism
,”
Pure Appl. Geophys.
,
91
(
1
), pp.
134
147
. 10.1007/BF00879562
16.
Bagley
,
R.
,
2007
, “
On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials
,”
Fract. Calc. Appl. Anal.
,
10
(
2
), pp.
123
126
.
17.
Rossikhin
,
Y.
,
Shitikova
,
M.
, and
Shcheglova
,
T.
,
2010
, “
Forced Vibrations of a Nonlinear Oscillator With Weak Fractional Damping
,”
J. Mech. Mater. Struct.
,
4
(
9
), pp.
1619
1636
. 10.2140/jomms.2009.4.1619
18.
Rossikhin
,
Y. A.
,
2010
, “
Reflections on Two Parallel Ways in the Progress of Fractional Calculus in Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010701
. 10.1115/1.4000246
19.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V
,
2019
, “Fractional Calculus in Structural Mechanics,”
Handbook of Fractional Calculus With Applications
, Vol.
7
,
D.
Baleanu
, and
A.
Mendes Lopes
, eds.,
De Gruyter
,
Berlin
, pp.
159
192
.
20.
Humar
,
J.
,
2012
,
Dynamics of Structures
,
CRC Press
,
Boca Raton, FL
.
21.
Markert
,
R.
, and
Seidler
,
M.
,
2001
, “
Analytically Based Estimation of the Maximum Amplitude During Passage Through Resonance
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1975
1992
. 10.1016/S0020-7683(00)00147-5
22.
Weaver
,
W.
, Jr.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
,
John Wiley & Sons
,
New York
.
23.
Frýba
,
L.
,
2013
,
Vibration of Solids and Structures Under Moving Loads
,
Springer Science & Business Media
,
Berlin
.
24.
Abu-Mallouh
,
R.
,
Abu-Alshaikh
,
I.
,
Zibdeh
,
H. S.
, and
Ramadan
,
K.
,
2012
, “
Response of Fractionally Damped Beams With General Boundary Conditions Subjected to Moving Loads
,”
Shock Vib.
,
19
(
3
), pp.
333
347
. 10.1155/2012/321421
25.
Freundlich
,
J. K.
,
2016
, “
Dynamic Response of a Simply Supported Viscoelastic Beam of a Fractional Derivative Type to a Moving Force Load
,”
J. Theor. Appl. Mech.
,
54
(
4
), pp.
1433
1445
. 10.15632/jtam-pl.54.4.1433
26.
Hedrih
,
K.
,
2005
, “
Partial Fractional Differential Equations of Creeping and Vibrations of Plate and Their Solutions (First Part)
,”
J. Mech. Behav. Mater.
,
16
(
4/5
), p.
305
.
27.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2006
, “
Analysis of Damped Vibrations of Linear Viscoelastic Plates With Damping Modeled With Fractional Derivatives
,”
Signal Process.
,
86
(
10
), pp.
2703
2711
. 10.1016/j.sigpro.2006.02.016
28.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2011
, “
The Analysis of the Impact Response of a Thin Plate via Fractional Derivative Standard Linear Solid Model
,”
J. Sound Vib.
,
330
(
9
), pp.
1985
2003
. 10.1016/j.jsv.2010.11.010
29.
Ingman
,
D.
, and
Suzdalnitsky
,
J.
,
2008
, “
Response of Viscoelastic Plate to Impact
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011010
. 10.1115/1.2731416
30.
Katsikadelis
,
J. T.
, and
Babouskos
,
N. G.
,
2010
, “
Post-Buckling Analysis of Viscoelastic Plates With Fractional Derivative Models
,”
Eng. Anal. Bound. Elem.
,
34
(
12
), pp.
1038
1048
. 10.1016/j.enganabound.2010.07.003
31.
Rossikhin
,
Y. A.
,
Shitikova
,
M. V.
, and
Trung
,
P. T.
,
2016
, “
Application of the Fractional Derivative Kelvin-Voigt Model for the Analysis of Impact Response of a Kirchhoff-Love Plate
,”
WSEAS Trans. Math.
,
15
, pp.
498
501
.
32.
Katsikadelis
,
J. T.
,
2015
, “
Generalized Fractional Derivatives and Their Applications to Mechanical Systems
,”
Arch. Appl. Mech.
,
85
(
9–10
), pp.
1307
1320
. 10.1007/s00419-014-0969-0
33.
Ari
,
M.
,
Faal
,
R. T.
, and
Zayernouri
,
M.
,
2019
, “
Vibrations Suppression of Fractionally Damped Plates Using Multiple Optimal Dynamic Vibration Absorbers
,”
Int. J. Comput. Math.
,
97
(
4
), pp.
1
24
. 10.1080/00207160.2019.1594792
34.
Permoon
,
M. R.
,
Haddadpour
,
H.
, and
Javadi
,
M.
,
2018
, “
Nonlinear Vibration of Fractional Viscoelastic Plate: Primary, Subharmonic, and Superharmonic Response
,”
Int. J. Nonlinear Mech.
,
99
, pp.
154
164
. 10.1016/j.ijnonlinmec.2017.11.010
35.
Shermergor
,
T. D.
,
1966
, “
On the Use of Fractional Differentiation Operators for the Description of Elastic-After Effect Properties of Materials
,”
J. Appl. Mech. Tech. Phys.
,
7
(
6
), pp.
85
87
. 10.1007/BF00914347
36.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach Science Publishers
,
Yverdon Yverdon-les-Bains, Switzerland
.
37.
Kiasat
,
M. S.
,
Zamani
,
H. A.
, and
Aghdam
,
M. M.
,
2014
, “
On the Transient Response of Viscoelastic Beams and Plates on Viscoelastic Medium
,”
Int. J. Mech. Sci.
,
83
, pp.
133
145
. 10.1016/j.ijmecsci.2014.03.007
38.
Podlubny
,
I.
,
2000
, “
Matrix Approach to Discrete Fractional Calculus
,”
Fract. Calc. Appl. Anal.
,
3
(
4
), pp.
359
386
.
39.
Podlubny
,
I.
,
Chechkin
,
A.
,
Skovranek
,
T.
,
Chen
,
Y.
, and
Jara
,
B. M. V.
,
2009
, “
Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations
,”
J. Comput. Phys.
,
228
(
8
), pp.
3137
3153
. 10.1016/j.jcp.2009.01.014
40.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.