Abstract

A new computationally efficient error adaptive first-order eigen-perturbation technique for real-time modal identification of linear vibrating systems is proposed. The existence of error terms in the approximation of the eigenvalue problem of response covariance matrix in a perturbative framework often hinders the convergence of response-only modal identification. In the proposed method, the error in first-order eigen-perturbation is incorporated using a feedback, formulated by exploiting the generalized eigenvalue decomposition of the real-time covariance matrix of streaming response data. Since the incorporation of the higher-order perturbation terms in the total perturbation is mathematically challenging, the proposed feedback approach provides a computationally efficient framework yet in a more elegant manner. A new criterion for the quality of updated eigenspace is proposed in the present work utilizing the concept of diagonal dominance. Numerical case studies and validation using a standard ASCE benchmark problem have shown applicability of the proposed approach in faster estimation of real-time modal properties and anomaly identification with minimal number of initially required batch data. The applicability of the proposed approach toward real-time under-determined modal identification problems is demonstrated using a real-time decentralized framework. The advantage of rapidly converging online mode-shapes is demonstrated using a passive vibration control problem, where a multi-tuned-mass-damper (MTMD) for a multi-degrees-of-freedom system is tuned online. An extension for online retuning of the detuned MTMD system further demonstrates the fidelity of the proposed algorithm in online passive control.

References

1.
Antoni
,
J.
, and
Chauhan
,
S.
,
2013
, “
A Study and Extension of Second-Order Blind Source Separation to Operational Modal Analysis
,”
J. Sound. Vib.
,
332
(
4
), pp.
1079
1106
. 10.1016/j.jsv.2012.09.016
2.
Brincker
,
R.
, and
Ventura
,
C.
,
2015
,
Introduction to Operational Modal Analysis
,
Wiley & Sons
,
Chichester, West Sussex
.
3.
Liu
,
W.
,
Gao
,
W.-c.
, and
Sun
,
Y.
,
2009
, “
Application of Modal Identification Methods to Spatial Structure Using Field Measurement Data
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
034503
. 10.1115/1.3085881
4.
Hazra
,
B.
,
Roffel
,
A.
,
Narasimhan
,
S.
, and
Pandey
,
M.
,
2010
, “
Modified Cross-Correlation Method for the Blind Identification of Structures
,”
J. Eng. Mech.
,
136
(
7
), pp.
889
897
. 10.1061/(ASCE)EM.1943-7889.0000133
5.
Ceravolo
,
R.
, and
Abbiati
,
G.
,
2013
, “
Time Domain Identification of Structures: Comparative Analysis of Output-Only Methods
,”
J. Eng. Mech.
,
139
(
4
), pp.
537
544
. 10.1061/(ASCE)EM.1943-7889.0000503
6.
Caldwell
,
R. A.
, and
Feeny
,
B. F.
,
2014
, “
Output-Only Modal Identification of a Nonuniform Beam by Using Decomposition Methods
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041010
. 10.1115/1.4027243
7.
Hu
,
Z.-X.
,
Huang
,
X.
,
Wang
,
Y.
, and
Wang
,
F.
,
2018
, “
Extended Smooth Orthogonal Decomposition for Modal Analysis
,”
ASME J. Vib. Acoust.
,
140
(
4
), p.
041008
. 10.1115/1.4039240
8.
Allen
,
M. S.
,
Sracic
,
M. W.
,
Chauhan
,
S.
, and
Hansen
,
M. H.
,
2011
, “
Output-Only Modal Analysis of Linear Time-Periodic Systems With Application to Wind Turbine Simulation Data
,”
Mech. Syst. Signal Process.
,
25
(
4
), pp.
1174
1191
. 10.1016/j.ymssp.2010.12.018
9.
Pakrashi
,
V.
,
O’Connor
,
A.
, and
Basu
,
B.
,
2010
, “
A Bridge-Vehicle Interaction Based Experimental Investigation of Damage Evolution
,”
Struct. Health. Monit.
,
9
(
4
), pp.
285
296
. 10.1177/1475921709352147
10.
Roffel
,
A.
,
Lourenco
,
R.
,
Narasimhan
,
S.
, and
Yarusevych
,
S.
,
2010
, “
Adaptive Compensation for Detuning in Pendulum Tuned Mass Dampers
,”
J.Struct. Eng.
,
137
(
2
), pp.
242
251
. 10.1061/(ASCE)ST.1943-541X.0000286
11.
Quqa
,
S.
,
Landi
,
L.
, and
Diotallevi
,
P. P.
,
2020
, “
Instantaneous Modal Identification Under Varying Structural Characteristics: A Decentralized Algorithm
,”
Mecha. Syst. Signal Process.
,
142
, p.
106750
. 10.1016/j.ymssp.2020.106750
12.
Chatzi
,
E. N.
, and
Smyth
,
A. W.
,
2009
, “
The Unscented Kalman Filter and Particle Filter Methods for Nonlinear Structural System Identification With Non-Collocated Heterogeneous Sensing
,”
Struct. Control Health Monitoring
,
16
(
1
), pp.
99
123
. 10.1002/stc.290
13.
Khanam
,
S.
,
Dutt
,
J.
, and
Tandon
,
N.
,
2014
, “
Extracting Rolling Element Bearing Faults From Noisy Vibration Signal Using Kalman Filter
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031008
. 10.1115/1.4026946
14.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2019
, “
First-Order Eigen-Perturbation Techniques for Real-Time Damage Detection of Vibrating Systems: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
71
(
6
), p.
060801
. 10.1115/1.4044287
15.
Hassanabadi
,
M. E.
,
Heidarpour
,
A.
,
Azam
,
S. E.
, and
Arashpour
,
M.
,
2020
, “
Recursive Principal Component Analysis for Model Order Reduction With Application in Nonlinear Bayesian Filtering
,”
Comput. Methods Appl. Mech. Eng.
,
371
, p.
113334
. 10.1016/j.cma.2020.113334
16.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2020
, “
Real Time Structural Modal Identification Using Recursive Canonical Correlation Analysis and Application Towards Online Structural Damage Detection
,”
J. Sound. Vib.
,
468
, p.
115101
. 10.1016/j.jsv.2019.115101
17.
Amini
,
F.
, and
Ghasemi
,
V.
,
2018
, “
Adaptive Modal Identification of Structures With Equivariant Adaptive Separation Via Independence Approach
,”
J. Sound. Vib.
,
413
, pp.
66
78
. 10.1016/j.jsv.2017.09.033
18.
Sadhu
,
A.
,
Hazra
,
B.
, and
Narasimhan
,
S.
,
2013
, “
Decentralized Modal Identification of Structures Using Parallel Factor Decomposition and Sparse Blind Source Separation
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
396
419
. 10.1016/j.ymssp.2013.06.031
19.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2012
,
Matrix Computations
, Vol.
3
,
JHU Press
,
Baltimore, MD
.
20.
Kato
,
T.
,
2013
,
Perturbation Theory for Linear Operators
, Vol.
132
,
Springer Science & Business Media
,
New York
.
21.
Zhou
,
W.
, and
Chelidze
,
D.
,
2008
, “
Generalized Eigenvalue Decomposition in Time Domain Modal Parameter Identification
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011001
. 10.1115/1.2775509
22.
Stewart
,
G. W.
,
1973
, “
Error and Perturbation Bounds for Subspaces Associated With Certain Eigenvalue Problems
,”
SIAM Rev.
,
15
(
4
), pp.
727
764
. 10.1137/1015095
23.
Rana
,
R.
, and
Soong
,
T.
,
1998
, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
,
20
(
3
), pp.
193
204
. 10.1016/S0141-0296(97)00078-3
You do not currently have access to this content.