Abstract

This paper proposes a novel phononic crystal sandwich beam (PCSB) for low-frequency and broadband vibration suppression. The representative volume element (RVE) consists of two hourglass truss unit cells with the same span but different rod radii. After validating the modeling method, a model of the PCSB is established to calculate band structure and transmittance response, and the results show good agreement. It is found that the PCSB can open wider and lower band gaps compared to a traditional sandwich beam (TSB). The band-folding mechanism is applied. The PCSB breaks the spatial symmetry, becomes diatomic, and opens the folding points, finally leading to two band-folding-induced gaps. The experiment is conducted on the PCSB, and the vibration band gap property is confirmed. Subsequently, the impacts of geometric parameters on the PCSB’s band gaps are investigated in detail. Design guidelines for tuning the geometric parameters toward lower frequency and broadband band gap are provided based on the parametric study results. In addition, the higher-order band-folding strategy is proposed. It is shown that a multi-folding PCSB can produce more band gaps. However, through two examples, i.e., second-folding and third-folding PCSBs, it is known that simply increasing the folding order may not be effective and even could deteriorate the vibration attenuation ability. In summary, this work explores a general strategy for designing sandwich beams with low-frequency and broadband vibration suppression ability.

References

1.
Wang
,
J. F.
,
Shi
,
C. Y.
,
Yang
,
N.
,
Sun
,
H. N.
,
Liu
,
Y. Q.
, and
Song
,
B. Y.
,
2018
, “
Strength, Stiffness, and Panel Peeling Strength of Carbon Fiber-Reinforced Composite Sandwich Structures With Aluminum Honeycomb Cores for Vehicle Body
,”
Compos. Struct.
,
184
, pp.
1189
1196
.
2.
Yang
,
W.
,
Xiong
,
J.
,
Feng
,
L. J.
,
Pei
,
C.
, and
Wu
,
L. Z.
,
2020
, “
Fabrication and Mechanical Properties of Three-Dimensional Enhanced Lattice Truss Sandwich Structures
,”
J. Sandw. Struct. Mater.
,
22
(
5
), pp.
1594
1611
.
3.
Harvey
,
D.
, and
Hubert
,
P.
,
2020
, “
Extensions of the Coating Approach for Topology Optimization of Composite Sandwich Structures
,”
Compos. Struct.
,
252
, p.
112682
.
4.
Chai
,
Y. Y.
,
Du
,
S. J.
,
Li
,
F. M.
, and
Zhang
,
C. Z.
,
2021
, “
Vibration Characteristics of Simply Supported Pyramidal Lattice Sandwich Plates on Elastic Foundation: Theory and Experiments
,”
Thin-Walled Struct.
,
166
, p.
108116
.
5.
Guo
,
Z. K.
,
Hu
,
G. B.
,
Jiang
,
J. C.
,
Yu
,
L. D.
,
Li
,
X.
, and
Liang
,
J. R.
,
2021
, “
Theoretical and Experimental Study of the Vibration Dynamics of a 3D-Printed Sandwich Beam With an Hourglass Lattice Truss Core
,”
Front. Mech. Eng.
,
7
, p.
651998
.
6.
Zhang
,
Y. W.
,
Li
,
Z.
,
Xu
,
K. F.
, and
Zang
,
J.
,
2021
, “
A Lattice Sandwich Structure With the Active Variable Stiffness Device Under Aerodynamical Condition
,”
Aerosp. Sci. Technol.
,
116
, p.
106849
.
7.
Bai
,
X. H.
,
Zheng
,
Z. H.
, and
Nakayama
,
A.
,
2019
, “
Heat Transfer Performance Analysis on Lattice Core Sandwich Panel Structures
,”
Int. J. Heat Mass Transfer
,
143
, p.
118525
.
8.
Lee
,
P. V. S.
,
Ngo
,
T. D.
,
Imbalzano
,
G.
, and
Tran
,
P.
,
2017
, “
Three-Dimensional Modelling of Auxetic Sandwich Panels for Localised Impact Resistance
,”
J. Sandw. Struct. Mater.
,
19
(
3
), pp.
291
316
.
9.
Rohini
,
R.
, and
Bose
,
S.
,
2019
, “
Electrodeposited Carbon Fiber and Epoxy Based Sandwich Architectures Suppress Electromagnetic Radiation by Absorption
,”
Compos. B: Eng.
,
161
, pp.
578
585
.
10.
Guo
,
Z. K.
,
Liu
,
C. C.
, and
Li
,
F. M.
,
2019
, “
Vibration Analysis of Sandwich Plates With Lattice Truss Core
,”
Mech. Adv. Mater. Struct.
,
26
(
5
), pp.
424
429
.
11.
Wang
,
G.
,
Yu
,
D. L.
,
Wen
,
J. H.
,
Liu
,
Y. Z.
, and
Wen
,
X. S.
,
2004
, “
One-Dimensional Phononic Crystals With Locally Resonant Structures
,”
Phys. Lett. A
,
327
(
5–6
), pp.
512
521
.
12.
Mead
,
D.
, and
Markuš
,
Š.
,
1983
, “
Coupled Flexural-Longitudinal Wave Motion in a Periodic Beam
,”
J. Sound Vib.
,
90
(
1
), pp.
1
24
.
13.
Wu
,
Z.
,
Li
,
F.
, and
Zhang
,
C.
,
2018
, “
Band-Gap Analysis of a Novel Lattice With a Hierarchical Periodicity Using the Spectral Element Method
,”
J. Sound Vib.
,
421
, pp.
246
260
.
14.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
Internally Coupled Metamaterial Beam for Simultaneous Vibration Suppression and Low Frequency Energy Harvesting
,”
J. Appl. Phys.
,
123
(
5
), p.
055107
.
15.
Liu
,
L.
, and
Hussein
,
M. I.
,
2012
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Sattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
.
16.
Cai
,
C. Q.
,
Zhou
,
J. X.
,
Wang
,
K.
,
Pan
,
H. B.
,
Tan
,
D. G.
,
Xu
,
D. L.
, and
Wen
,
G. L.
,
2022
, “
Flexural Wave Attenuation by Metamaterial Beam With Compliant Quasi-Zero-Stiffness Resonators
,”
Mech. Syst. Signal Process.
,
174
, p.
109119
.
17.
Hu
,
G. B.
,
Lan
,
C. B.
,
Tang
,
L. H.
, and
Yang
,
Y. W.
,
2022
, “
Local Resonator Stimulated Polarization Transition in Metamaterials and the Formation of Topological Interface States
,”
Mech. Syst. Signal Process.
,
165
, p.
108388
.
18.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A.
,
Haberman
,
M.
, and
Huang
,
G. L.
,
2017
, “
Non-Reciprocal Wave Propagation in Modulated Elastic Metamaterials
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
473
(
2202
), p.
20170188
.
19.
Chen
,
J. S.
, and
Sun
,
C. T.
,
2011
, “
Dynamic Behavior of a Sandwich Beam With Internal Resonators
,”
J. Sandw. Struct. Mater.
,
13
(
4
), pp.
391
408
.
20.
Sharma
,
B.
, and
Sun
,
T. C.
,
2016
, “
Local Resonance and Bragg Bandgaps in Sandwich Beams Containing Periodically Inserted Resonators
,”
J. Sound Vib.
,
364
, pp.
133
146
.
21.
Guo
,
Z. K.
,
Hu
,
G. B.
,
Sorokin
,
V.
,
Tang
,
L. H.
,
Yang
,
X. D.
, and
Zhang
,
J.
,
2021
, “
Low-Frequency Flexural Wave Attenuation in Metamaterial Sandwich Beam With Hourglass Lattice Truss Core
,”
Wave Motion
,
104
, p.
102750
.
22.
Li
,
H.
,
Hu
,
Y. B.
,
Huang
,
H. Y.
,
Chen
,
J. L.
,
Zhao
,
M. Y.
, and
Li
,
B.
,
2021
, “
Broadband Low-Frequency Vibration Attenuation in 3D Printed Composite Meta-Lattice Sandwich Structures
,”
Compos. B: Eng.
,
215
, p.
108772
.
23.
Guo
,
J. J.
,
Li
,
Y. Q.
,
Xiao
,
Y.
,
Fan
,
Y. L.
,
Yu
,
D. L.
, and
Wen
,
J. H.
,
2022
, “
Multiscale Modeling and Design of Lattice Truss Core Sandwich Metastructures for Broadband Low-Frequency Vibration Reduction
,”
Compos. Struct.
,
289
, p.
115463
.
24.
An
,
X. Y.
,
Yuan
,
X. F.
,
Hou
,
X. X.
, and
Fan
,
H. L.
,
2023
, “
Low Frequency Vibration Attenuation of Meta-Orthogrid Sandwich Panel With High Load-Bearing Capacity
,”
Compos. Struct.
,
305
, p.
116560
.
25.
Cai
,
C. Q.
,
Zhou
,
J. X.
,
Wu
,
L. C.
,
Wang
,
K.
,
Xu
,
D. L.
, and
Ouyang
,
H. J.
,
2020
, “
Design and Numerical Validation of Quasi-Zero-Stiffness Metamaterials for Very Low-Frequency Band Gaps
,”
Compos. Struct.
,
236
, p.
111862
.
26.
Fang
,
X.
,
Wen
,
J. H.
,
Bonello
,
B.
,
Yin
,
J. F.
, and
Yu
,
D. L.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
.
27.
Xue
,
Y.
,
Li
,
J. Q.
,
Wang
,
Y.
, and
Li
,
F. M.
,
2021
, “
Tunable Nonlinear Band Gaps in a Sandwich-Like Meta-Plate
,”
Nonlinear Dyn.
,
106
, pp.
2841
2857
.
28.
Li
,
J.
,
Fan
,
X.
, and
Li
,
F.
,
2020
, “
Numerical and Experimental Study of a Sandwich-Like Metamaterial Plate for Vibration Suppression
,”
Compos. Struct.
,
238
, p.
111969
.
29.
Li
,
H.
,
Li
,
Y. L.
, and
Liu
,
X.
,
2023
, “
Double-Beam Metastructure With Inertially Amplified Resonators for Flexural Wave Attenuation
,”
Eur. J. Mech. A/Solids.
,
97
, p.
104794
.
30.
He
,
F. Y.
,
Shi
,
Z. Y.
,
Qian
,
D. H.
,
Tu
,
J.
, and
Chen
,
M. L.
,
2022
, “
Flexural Wave Bandgap Properties in Metamaterial Dual-Beam Structure
,”
Phys. Lett. A
,
429
, p.
127950
.
31.
Guo
,
Z. K.
,
Hu
,
G.
,
Sorokin
,
V.
,
Yang
,
Y.
, and
Tang
,
L.
,
2021
, “
Sound Transmission Through Sandwich Plate With Hourglass Lattice Truss Core
,”
J. Sandw. Struct. Mater.
,
23
(
6
), pp.
1902
1928
.
32.
Feng
,
L. J.
,
Wei
,
G. T.
,
Yu
,
G. C.
, and
Wu
,
L. Z.
,
2019
, “
Underwater Blast Behaviors of Enhanced Lattice Truss Sandwich Panels
,”
Int. J. Mech. Sci.
,
150
, pp.
238
246
.
33.
Muhammad
,
Zhou
,
W. J.
, and
Lim
,
C. W.
,
2019
, “
Topological Edge Modeling and Localization of Protected Interface Modes in 1D Phononic Crystals for Longitudinal and Bending Elastic Waves
,”
Int. J. Mech. Sci.
,
159
, pp.
359
372
.
34.
Zhang
,
H. B.
,
Liu
,
B. L.
,
Zhang
,
X. L.
,
Wu
,
Q. Q.
, and
Wang
,
X. G.
,
2019
, “
Zone Folding Induced Tunable Topological Interface States in One-Dimensional Phononic Crystal Plates
,”
Phys. Lett. A
,
383
(
23
), pp.
2797
2801
.
35.
Lou
,
J.
,
Wang
,
B.
,
Ma
,
L.
, and
Wu
,
L. Z.
,
2013
, “
Free Vibration Analysis of Lattice Sandwich Beams Under Several Typical Boundary Conditions
,”
Acta Mech. Sol. Sin.
,
26
(
5
), pp.
458
467
.
36.
Li
,
Z. Y.
,
Ma
,
T. X.
,
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Zhang
,
C. Z.
,
2020
, “
Vibration Isolation by Novel Meta-Design of Pyramid-Core Lattice Sandwich Structures
,”
J. Sound Vib.
,
480
, p.
115377
.
37.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
2022
,
Solid State Physics
,
Cengage Learning
,
Orlando, FL
.
38.
Indaleeb
,
M. M.
,
Ahmed
,
H.
,
Saadatzi
,
M.
, and
Banerjee
,
S.
,
2020
, “
Deaf Band-Based Prediction of Dirac Cone in Acoustic Metamaterials
,”
J. Appl. Phys.
,
127
(
6
), p.
064903
.
39.
Indaleeb
,
M. M.
,
Banerjee
,
S.
,
Ahmed
,
H.
,
Saadatzi
,
M.
, and
Ahmed
,
R.
,
2019
, “
Deaf Band Based Engineered Dirac Cone in a Periodic Acoustic Metamaterial: A Numerical and Experimental Study
,”
Phys. Rev. B
,
99
(
2
), p.
024311
.
40.
He
,
C.
,
Lai
,
H.-S.
,
He
,
B.
,
Yu
,
S.-Y.
,
Xu
,
X.
,
Lu
,
M.-H.
, and
Chen
,
Y.-F.
,
2020
, “
Acoustic Analogues of Three-Dimensional Topological Insulators
,”
Nat. Commun.
,
11
(
1
), p.
2318
.
41.
Ni
,
A. C.
, and
Shi
,
Z. F.
,
2023
, “
Topological Metamaterial Plates: Numerical Investigation, Experimental Validation and Applications
,”
Eng. Struct.
,
275
, p.
115288
.
42.
Chen
,
Z.
,
Zhou
,
W.
, and
Lim
,
C.
,
2021
, “
Tunable Frequency Response of Topologically Protected Interface Modes for Membrane-Type Metamaterials Via Voltage Control
,”
J. Sound Vib.
,
494
, p.
115870
.
43.
Yu
,
D. W.
,
Hu
,
G. B.
,
Guo
,
Z. K.
,
Hong
,
J.
, and
Yang
,
Y. W.
,
2023
, “
Topological Interface State Formation in an Hourglass Lattice Sandwich Meta-Structure
,”
Int. J. Mech. Sci.
,
246
, p.
108170
.
You do not currently have access to this content.