Abstract

Quasi-periodic motions can be numerically found in piecewise-linear systems, however, their characteristics have not been well understood. To illustrate this, an incremental harmonic balance (IHB) method with two timescales is extended in this work to analyze quasi-periodic motions of a non-smooth dynamic system, i.e., a gear transmission system with piecewise linearity stiffness. The gear transmission system is simplified to a four degree-of-freedom nonlinear dynamic model by using a lumped mass method. Nonlinear governing equations of the gear transmission system are formulated by utilizing the Newton’s second law. The IHB method with two timescales applicable to piecewise-linear systems is employed to examine quasi-periodic motions of the gear transmission system whose Fourier spectra display uniformly spaced sideband frequencies around carrier frequencies. The Floquet theory is extended to analyze quasi-periodic solutions of piecewise-linear systems based on introduction of a small perturbation on a steady-state quasi-periodic solution of the gear transmission system with piecewise linearities. Comparison with numerical results calculated using the fourth-order Runge-Kutta method confirms that excellent accuracy of the IHB method with two timescales can be achieved with an appropriate number of harmonic terms.

References

1.
Natsiavas
,
S.
, and
Theodossiades
,
S.
,
2000
, “
Non-Linear Dynamics of Gear-Pair Systems With Periodic Stiffness and Backlash
,”
J. Sound Vib.
,
229
(
2
), pp.
287
310
.
2.
Yang
,
Y.
,
Hu
,
N. Q.
,
Tang
,
J. Y.
,
Hu
,
J.
,
Zhang
,
L.
, and
Cheng
,
Z.
,
2021
, “
Dynamic Analysis for a Spur Geared Rotor System With Tooth Tip Chipping Based on an Improved Time-Varying Mesh Stiffness Model
,”
Mech. Mach. Theory
,
165
, p.
104435
.
3.
Wang
,
J. G.
,
Zhang
,
J.
,
Yao
,
Z. Y.
, et al.,
2019
, “
Nonlinear Characteristics of a Multi-degree-of-Freedom Spur Gear System With Bending-Torsional Coupling Vibration
,”
Mech. Syst. Signal Process.
,
121
, pp.
810
827
.
4.
Azimi
,
M.
,
2021
, “
Parametric Stability of Geared Systems With Linear Suspension in Permanent Contact Regime
,”
Nonlinear Dyn.
,
106
(
4
), pp.
3051
3073
.
5.
Azimi
,
M.
,
2022
, “
Pitchfork and Hopf Bifurcations of Geared Systems With Nonlinear Suspension in Permanent Contact Regime
,”
Nonlinear Dyn.
,
107
(
4
), pp.
3339
3363
.
6.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
,
2000
, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.
7.
Wang
,
J. G.
,
He
,
G. Y.
,
Zhang
,
J.
,
Zhao
,
Y. X.
, and
Yao
,
Y.
,
2017
, “
Nonlinear Dynamics Analysis of the Spur Gear System for Railway Locomotive
,”
Mech. Syst. Signal Process.
,
85
, pp.
41
55
.
8.
Xiao
,
Z. L.
,
Zhou
,
C. J.
,
Chen
,
S. Y.
, et al.,
2019
, “
Effects of Oil Film Stiffness and Damping on Spur Gear Dynamics
,”
Nonlinear Dyn.
,
96
, pp.
145
159
.
9.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.
10.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1995
, “
Steady State Forced Response of a Mechanical Oscillator With Combined Parametric Excitation and Clearance Type Non-Linearity
,”
J. Sound Vib.
,
185
(
5
), pp.
743
765
.
11.
Raghothama
,
A.
, and
Narayanan
,
S.
,
1999
, “
Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
226
(
3
), pp.
469
492
.
12.
Shen
,
Y. J.
,
Yang
,
S. P.
, and
Liu
,
X. D.
,
2006
, “
Nonlinear Dynamics of a Spur Gear Pair With Time-Varying Stiffness and Backlash Based on Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
48
(
11
), pp.
1256
1263
.
13.
Wei
,
S.
,
Han
,
Q. K.
,
Dong
,
X. J.
,
Peng
,
Z. K.
, and
Chu
,
F. L.
,
2017
, “
Dynamic Response of a Single-Mesh Gear System With Periodic Mesh Stiffness and Backlash Nonlinearity Under Uncertainty
,”
Nonlinear Dyn.
,
89
, pp.
49
60
.
14.
Guerine
,
A.
,
El Hami
,
A.
,
Walha
,
L.
, et al.,
2015
, “
A Perturbation Approach for the Dynamic Analysis of One Stage Gear System With Uncertain Nnparameters
,”
Mech. Mach. Theory
,
92
, pp.
113
126
.
15.
Moradi
,
H.
, and
Salarieh
,
H.
,
2012
, “
Analysis of Nonlinear Oscillations in Spur Gear Pairs With Approximated Modelling of Backlash Nonlinearity
,”
Mech. Mach. Theory
,
51
, pp.
14
31
.
16.
Liao
,
F. L.
,
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2023
, “
Nonlinear Vibration of a Multi-degree-of-Freedom Gear Transmission System With Multipiecewise Linear Functions
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
4
), p.
041003
.
17.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
, pp.
783
806
.
18.
Li
,
Z. X.
, and
Peng
,
Z.
,
2016
, “
Nonlinear Dynamic Response of a Multi-degree of Freedom Gear System Dynamic Model Coupled With Tooth Surface Characters: A Case Study on Coal Cutters
,”
Nonlinear Dyn.
,
84
, pp.
271
286
.
19.
Cao
,
Z.
,
Chen
,
Z. G.
, and
Jiang
,
H. J.
,
2020
, “
Nonlinear Dynamics of a Spur Gear Pair With Force-Dependent Mesh Stiffness
,”
Nonlinear Dyn.
,
99
, pp.
1227
1241
.
20.
Gou
,
X. F.
,
Zhu
,
L. Y.
, and
Chen
,
D. L.
,
2015
, “
Bifurcation and Chaos Analysis of Spur Gear Pair in Two-Parameter Plane
,”
Nonlinear Dyn.
,
79
, pp.
2225
2235
.
21.
Chang
,
J.
, and
Cai
,
W.
,
2015
, “
Bifurcation and Chaos of Gear-Rotor–Bearing System Lubricated With Couple-Stress Fluid
,”
Nonlinear Dyn.
,
79
, pp.
749
763
.
22.
Theodossiades
,
S.
, and
Natsiavas
,
S.
,
2001
, “
On Geared Rotordynamic Systems With Oil Journal Bearings
,”
J. Sound Vib.
,
243
(
4
), pp.
721
745
.
23.
Zhou
,
S. H.
,
Song
,
G. Q.
,
Ren
,
Z. H.
, and
Wen
,
B. C.
,
2016
, “
Nonlinear Dynamic Analysis of Coupled Gear-Rotor-Bearing System With the Effect of Internal and External Excitations
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
281
292
.
24.
Chen
,
C. S.
,
Natsiavas
,
S.
, and
Nelson
,
H. D.
,
1997
, “
Stability Analysis and Complex Dynamics of a Gear-Pair System Supported by a Squeeze Film Damper
,”
ASME J. Vib. Acoust.
,
119
(1), pp.
85
88
.
25.
Yi
,
Y.
,
Huang
,
K.
,
Xiong
,
Y. S.
, and
Sang
,
M.
,
2019
, “
Nonlinear Dynamic Modelling and Analysis for a Spur Gear System With Time-Varying Pressure Angle and Gear Backlash
,”
Mech. Syst. Signal Process.
,
132
, pp.
18
34
.
26.
Li
,
S.
,
Wu
,
Q. M.
, and
Zhang
,
Z. Q.
,
2014
, “
Bifurcation and Chaos Analysis of Multistage Planetary Gear Train
,”
Nonlinear Dyn.
,
75
, pp.
217
233
.
27.
Jiang
,
Y.
,
Zhu
,
H.
,
Li
,
Z.
, et al.,
2016
, “
The Nonlinear Dynamics Response of Cracked Gear System in a Coal Cutter Taking Environmental Multi-frequency Excitation Forces Into Consideration
,”
Nonlinear Dyn.
,
84
, pp.
203
222
.
28.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.
29.
Howard
,
I.
,
Jia
,
S. X.
, and
Wang
,
J. D.
,
2001
, “
The Dynamic Modelling of a Spur Gear in Mesh Including Friction and a Crack
,”
Mech. Syst. Signal Process.
,
15
(
5
), pp.
831
853
.
30.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Non-Linear Dynamics of a Geared Rotor-Bearing System With Multiple Clearances
,”
J. Sound Vib.
,
144
(
3
), pp.
469
506
.
31.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1982
, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
, pp.
849
853
.
32.
Lau
,
S. L.
, and
Zhang
,
W. S.
,
1992
, “
Nonlinear Vibrations of Piecewise-Linear Systems by Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
59
(1), pp.
153
160
.
33.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
An Incremental Harmonic Balance Method With Two Timescales for Quasiperiodic Motion of Nonlinear Systems Whose Spectrum Contains Uniformly Spaced Sideband Frequencies
,”
Nonlinear Dyn.
,
90
(
2
), pp.
1015
1033
.
34.
Huang
,
J. L.
,
Zhou
,
W. J.
, and
Zhu
,
W. D.
,
2019
, “
Quasi-Periodic Motions of High-Dimensional Nonlinear Models of a Translating Beam With a Stationary Load Subsystem Under Harmonic Boundary Excitation
,”
J. Sound Vib.
,
462
, p.
114870
.
35.
Huang
,
J. L.
,
Wang
,
T.
, and
Zhu
,
W. D.
,
2021
, “
An Incremental Harmonic Balance Method With Two Time-Scales for Quasi-Periodic Responses of a Van Der Pol–Mathieu Equation
,”
Int. J. Non-Linear Mech.
,
135
, p.
103767
.
36.
Huang
,
J. L.
,
Zhang
,
B. X.
, and
Zhu
,
W. D.
,
2022
, “
Quasi-Periodic Solutions of a Damped Nonlinear Quasi-Periodic Mathieu Equation by the Incremental Harmonic Balance Method With Two Time Scales
,”
ASME J. Appl. Mech.
,
89
(
9
), p.
091009
.
37.
Huang
,
J. L.
,
Xiao
,
L. J.
, and
Zhu
,
W. D.
,
2020
, “
Investigation of Quasi-Periodic Response of a Buckled Beam Under Harmonic Base Excitation With an “Unexplained” Sideband Structure
,”
Nonlinear Dyn.
,
100
, pp.
2103
2119
.
38.
Huang
,
J. L.
,
Su
,
R. K. L.
, and
Li
,
W. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
.
39.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
.
40.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, et al.,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.
41.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.
42.
Liao
,
H. T.
,
Zhao
,
Q. Y.
, and
Fang
,
D. N.
,
2020
, “
The Continuation and Stability Analysis Methods for Quasi-Periodic Solutions of Nonlinear Systems
,”
Nonlinear Dyn.
,
100
, pp.
1469
1496
.
You do not currently have access to this content.